什么51派对啊,全坐牢了。
FWT模板
用法:op代表是IFWT还是FWT,or和and的都是-1代表IFWT,xor是inv2代表IFWT
进一步
我们可以想一个大n*n矩阵A,是由A[i][j] = a[i^j],这个A是FWT_XOR(a)
Circulant Matrix
P4717 【模板】快速莫比乌斯/沃尔什变换 (FMT/FWT)
板子题如上
模板如下
#include <bits/stdc++.h>
using namespace std;
const int mod =1e9+7;
int n;
const int N = 1<<17|1;
int a[N];
int b[N];
void FWT_or(int a[],int op)
{
for(int i=1;i<n;i<<=1)
{
for(int p=i<<1,j=0;j<n;j+=p)
{
for(int k=0;k<i;k++)
{
(a[i+j+k]+=a[j+k]*op+mod)%=mod;
}
}
}
}
void FWT_and(int a[],int op)
{
for(int i=1;i<n;i<<=1)
{
for(int p=i<<1,j=0;j<n;j+=p)
{
for(int k=0;k<i;k++)
{
(a[j+k]+=a[i+j+k]*op+mod)%=mod;
}
}
}
}
void FWT_xor(int a[],int op)
{
for(int i=1;i<n;i<<=1)
{
for(int p=i<<1,j=0;j<n;j+=p)
{
for(int k=0;k<i;k++)
{
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%mod;
a[i+j+k]=(X+mod-Y)%mod;
(a[j+k]*=op)%=mod,(a[i+j+k]*=op)%=mod;
}
}
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)//注意从0开始
{
cin>>a[i];
}
for(int i=0;i<n;i++)
{
cin>>b[i];
}
}
概率期望
题意:n此操作,连续x次操作成功的得分是x的m次幂,每次操作成功概率已知,求得分期望
思路:q[i]记录连续i次成功的贡献,p[i][j]记录从i开始连续成功j次的概率,卷积求出期望。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
#define int long long
const int mod = 1e9+7;
int fastpow(int n,int a)
{
int res=1ll;
while(n)
{
if(n&1ll)
{
res=(res*a)%mod;
}
a=(a*a)%mod;
n>>=1ll;
}
return res;
}
int a[1100];
int q[1100];
int ans;
int p[1100][1100];
signed main()
{
int inv=fastpow(mod-2ll,100ll);
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
q[i]=fastpow(m,i);
}
for(int i=1;i<=n;i++)
{
p[i][i]=a[i]*inv%mod;
for(int j=i+1;j<=n;j++)
{
p[i][j]=p[i][j-1]*a[j]%mod*inv%mod;
}
}
for(int i=0;i<n;i++)
{
for(int j=i+1;j<=n;j++)
{
ans+=p[i+1][j]*q[j-i]%mod*(100ll-a[i])%mod*inv%mod*(100ll-a[j+1])%mod*inv%mod;
ans=ans%mod;
}
}
cout<<ans<<endl;
}
背包变型。
C. Palindrome Basis
题意:给定一个数,问这个数被回文数相加得来的不同方案数是多少
定义回文数:数字翻转后不变 比如 1,11,121
思路:由于n很小只有40000想到是否可以考虑n*n级别算法的优化,发现实际上40000个数中只有不到499个数是回文数,回文数题中说可以任意取
再看题意就是:有499种物品给定体积,每种物品无限取,求物品体积恰好是n的方案数
这样就很明确了:完全背包恰好装满情况变型
#include <bits/stdc++.h>
using namespace std;
const int N = 4e4+100;
const int mod =1e9+7;
int cnt;
int obj[N];
int dp[N][510];
bool check(int n)
{
int a[10];
int cnt1=0;
while(n)
{
a[++cnt1]=n%10;
n/=10;
}
for(int i=1,j=cnt1;i<=j;i++,j--)
{
if(a[i]!=a[j])
{
return false;
}
}
return true;
}
void get()
{
for(int i=1;i<=N;i++)
{
if(check(i))
{
obj[++cnt]=i;
}
}
}
int main()
{
get();
for(int i=1;i<=cnt;i++)
{
dp[0][i]=1;
}
for(int i=1;i<=40000+10;i++)
{
dp[i][0]=0;
for(int j=1;j<=cnt;j++)
{
if(i>=obj[j])
{
dp[i][j]=(dp[i][j-1]+dp[i-obj[j]][j])%mod;
}
else
{
dp[i][j]=dp[i][j-1]%mod;
}
}
}
int t;
for(cin>>t;t;t--)
{
int n;
cin>>n;
cout<<dp[n][cnt]%mod<<endl;
}
return 0;
}
难度 1600
题意:给一个数n,求f(1)到f(n)的和
定义:f(x)的值为,第一个不能作为x因子的正整数
结论题
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int mod = 1e9+7;
int gcd(int x,int y){
return y?gcd(y,x%y):x;
}
int lcm(int x,int y){
return x/gcd(x,y)*y;
}
signed main()
{
int t;
for(cin>>t;t;t--)
{
int n;
int temp=1;
int ans=0ll;
cin>>n;
for(int i=1;temp<=n;i++)
{
temp=lcm(temp,i);
ans+=n/temp;
if(temp>n)
break;
ans%=mod;
}
ans+=n;
cout<<ans%mod<<endl;
}
}
人麻了,5.8省赛延期了,怕不是要和蓝桥国赛,和期末撞在一起,千万别啊,,你是要逼死一个又搞绩点又搞竞赛的人吗。