5.1 FWT(IFWT)模板+完全背包变型+概率期望+数论

什么51派对啊,全坐牢了。

FWT模板
用法:op代表是IFWT还是FWT,or和and的都是-1代表IFWT,xor是inv2代表IFWT

进一步
我们可以想一个大n*n矩阵A,是由A[i][j] = a[i^j],这个A是FWT_XOR(a)

Circulant Matrix
P4717 【模板】快速莫比乌斯/沃尔什变换 (FMT/FWT)
板子题如上
模板如下

#include <bits/stdc++.h>
using namespace std;
const int mod =1e9+7;
int n;
const int N = 1<<17|1;
int a[N];
int b[N];
void FWT_or(int a[],int op)
{
	for(int i=1;i<n;i<<=1)
    {
		for(int p=i<<1,j=0;j<n;j+=p)
		{
			for(int k=0;k<i;k++)
			{
				(a[i+j+k]+=a[j+k]*op+mod)%=mod;
			}
		}
	}
}

void FWT_and(int a[],int op)
{
	for(int i=1;i<n;i<<=1)
    {
		for(int p=i<<1,j=0;j<n;j+=p)
		{
			for(int k=0;k<i;k++)
			{
				(a[j+k]+=a[i+j+k]*op+mod)%=mod;
			}
		}
	}
}

void FWT_xor(int a[],int op)
{
	for(int i=1;i<n;i<<=1)
    {
		for(int p=i<<1,j=0;j<n;j+=p)
        {
			for(int k=0;k<i;k++)
			{
				int X=a[j+k],Y=a[i+j+k];
				a[j+k]=(X+Y)%mod;
				a[i+j+k]=(X+mod-Y)%mod;
				(a[j+k]*=op)%=mod,(a[i+j+k]*=op)%=mod;
			}
		}
	}
}
int main()
{
  cin>>n;
  for(int i=0;i<n;i++)//注意从0开始
  {
      cin>>a[i];
  }
  for(int i=0;i<n;i++)
  {
      cin>>b[i];
  }
}

概率期望

Music Game

题意:n此操作,连续x次操作成功的得分是x的m次幂,每次操作成功概率已知,求得分期望

思路:q[i]记录连续i次成功的贡献,p[i][j]记录从i开始连续成功j次的概率,卷积求出期望。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
#define int long long
const int mod = 1e9+7;
int fastpow(int n,int a)
{
    int res=1ll;
    while(n)
    {
        if(n&1ll)
        {
            res=(res*a)%mod;
        }
        a=(a*a)%mod;
        n>>=1ll;
    }
    return res;
}
int a[1100];
int q[1100];
int ans;
int p[1100][1100];
signed main()
{
    int inv=fastpow(mod-2ll,100ll);
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        q[i]=fastpow(m,i);
    }
    for(int i=1;i<=n;i++)
    {
        p[i][i]=a[i]*inv%mod;
        for(int j=i+1;j<=n;j++)
        {
            p[i][j]=p[i][j-1]*a[j]%mod*inv%mod;
        }
    }
    for(int i=0;i<n;i++)
    {
        for(int j=i+1;j<=n;j++)
        {
            ans+=p[i+1][j]*q[j-i]%mod*(100ll-a[i])%mod*inv%mod*(100ll-a[j+1])%mod*inv%mod;
			ans=ans%mod;
        }
    }
    cout<<ans<<endl;
}

背包变型。
C. Palindrome Basis
题意:给定一个数,问这个数被回文数相加得来的不同方案数是多少
定义回文数:数字翻转后不变 比如 1,11,121

思路:由于n很小只有40000想到是否可以考虑n*n级别算法的优化,发现实际上40000个数中只有不到499个数是回文数,回文数题中说可以任意取

再看题意就是:有499种物品给定体积,每种物品无限取,求物品体积恰好是n的方案数
这样就很明确了:完全背包恰好装满情况变型

#include <bits/stdc++.h>
using namespace std;
const int N = 4e4+100;
const int mod =1e9+7;
int cnt;
int obj[N];
int dp[N][510];
bool check(int n)
{
    int a[10];
    int cnt1=0;
    while(n)
    {
        a[++cnt1]=n%10;
        n/=10;
    }
    for(int i=1,j=cnt1;i<=j;i++,j--)
    {
        if(a[i]!=a[j])
        {
            return false;
        }
    }
    return true;
}
void get()
{
    for(int i=1;i<=N;i++)
    {
        if(check(i))
        {
            obj[++cnt]=i;
        }
    }
}
int main()
{
    get();
    for(int i=1;i<=cnt;i++)
    {
        dp[0][i]=1;
    }
    for(int i=1;i<=40000+10;i++)
    {
        dp[i][0]=0;
        for(int j=1;j<=cnt;j++)
        {
            if(i>=obj[j])
            {
                dp[i][j]=(dp[i][j-1]+dp[i-obj[j]][j])%mod;
            }
            else
            {
                dp[i][j]=dp[i][j-1]%mod;
            }
        }
    }
    int t;
    for(cin>>t;t;t--)
    {
        int n;
        cin>>n;
        cout<<dp[n][cnt]%mod<<endl;
    }
    return 0;
}

数论
C. Strange Function

难度 1600

题意:给一个数n,求f(1)到f(n)的和
定义:f(x)的值为,第一个不能作为x因子的正整数

结论题

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int mod = 1e9+7;
int gcd(int x,int y){
	return y?gcd(y,x%y):x;
}
int lcm(int x,int y){
	return x/gcd(x,y)*y;
}
signed main()
{
   int t;
   for(cin>>t;t;t--)
   {
       int n;
       int temp=1;
       int ans=0ll;
       cin>>n;
       for(int i=1;temp<=n;i++)
       {
           temp=lcm(temp,i);
           ans+=n/temp;
           if(temp>n)
            break;
            ans%=mod;
       }
       ans+=n;
       cout<<ans%mod<<endl;
   }
}

人麻了,5.8省赛延期了,怕不是要和蓝桥国赛,和期末撞在一起,千万别啊,,你是要逼死一个又搞绩点又搞竞赛的人吗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值