杭电OJ1001题C语言版

题目说明

题目
本题:计算1+2+…+n的和,用户输入n,程序返回sum的值,注意每一组结果之间要空一行。

题目解析

需要注意以下两点:
1.For each case.
2.blank line.

本题的大致流程:

  1. 用户输入n
  2. 计算1+2+3+…+n
  3. 输出sum和换行符\n
  4. 令sum = 0 ,继续输入n至文件末尾

完整源码

#include<stdio.h>

int main(void){
	
	int n;
	int sum = 0;
	while(scanf("%d",&n) != EOF){
		int i;
		for( i=1; i<=n; i++){
			
			sum += i;
			
		}
		printf("%d\n\n",sum);
		sum = 0; 
	}
	
	return 0;
}

小收获

流程控制很重要!一定要先搞清楚程序的流程再开始动手!

注:本人是C语言新手,如有错误,欢迎指正,感谢!(合十)

### 查找杭电OJ库中编号为1002目及其C语言实现 对于杭电在线评测系统(HDU OJ)中的第1002号问,该问是关于计算多个整数的最大公约数(GCD),并进一步利用这些最大公约数来解决特定场景下的应用。然而,具体到此目的描述并未直接给出,但可以推测其核心在于处理多组测试数据以及求解两个或更多整数之间的关系。 针对此类涉及最大公约数的问,在C语言中可以通过欧几里得算法高效地解决问。下面提供了一个基于给定条件的解决方案: ```c #include <stdio.h> // 计算两数的最大公约数函数定义 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // 主程序入口 int main() { int T; // 测试案例数量 scanf("%d", &T); while(T--) { int n; // 整数的数量 scanf("%d", &n); int num[n]; for(int i = 0; i < n; ++i){ scanf("%d", &num[i]); } // 假设第一个数作为初始值 int result = num[0]; // 迭代计算所有数字间的最小公倍数(LCM), 使用gcd辅助计算LCM for(int i = 1; i < n; ++i){ result = ((result * num[i]) / gcd(result, num[i])); } printf("%d\n", result); } return 0; } ``` 上述代码实现了读取多组测试用例的功能,并对每一组内的若干个正整数进行了最小公倍数(LCM)的计算[^1]。这里采用了辗转相除法(也称为欧几里德算法)用于寻找任意一对整数的最大公约数(GCD),进而通过公式`lcm(a,b)=a*b/gcd(a,b)`得到两者之间最小公倍数的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值