[hive]留存率(次日/七日/月)

文章描述了如何利用HQL查询语言处理日志数据,计算特定日期范围(2021-01-01至2022-02-01)内的次日留存率。通过建立临时表,插入样本数据,然后执行左连接和分组计数操作,来确定在次日仍然活跃的用户比例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、需求

使用hql对以下日志进行分析,加工出2021-01-01到2022-02-01期间的次日留存率。

2022-02-01的次日留存率=2022-02-01登录的人中也在2022-02-02登录的人数/2022-02-01登录的人数

user_id

login_time

c769fefc10eda98b

2021-01-01 12:00:00

c769fefc10eda98b

2021-01-02 11:00:00

c769fefc10eda98b

2021-01-03 11:10:00

ec5e97ab48c92879

2021-01-01 12:00:00

ec5e97ab48c92879

2021-01-02 12:00:00

3d610dc3a2414000

2021-01-01 12:00:00

2、思路

求2021-01-01的次日留存,join后分组是这样的,找到差为1的id再去重就可以了,如果是七日留存,则差为7

user_id

login_time

c769fefc10eda98b

2021-01-01

2021-01-02

c769fefc10eda98b

2021-01-01

2021-01-03

c769fefc10eda98b

2021-01-02

2021-01-03

c769fefc10eda98b

2021-01-03

NULL

ec597ab48c92879

2021-01-01

2021-01-02

ec5e97ab48c92879

2021-01-02

NULL

3d610dc3a241400

2021-01-01

NULL

3、建表

drop table tmp.test_liucun;
create table tmp.test_liucun(
    user_id string,
    login_time string
)
row format delimited
fields terminated by "\t";

insert into table tmp.test_liucun
select "c769fefc10eda98b","2021-01-01 12:00:00"
union select"c769fefc10eda98b","2021-01-02 11:00:00"
union select "c769fefc10eda98b","2021-01-03 11:10:00"
union select "ec5e97ab48c92879","2021-01-01 12:00:00"
union select "ec5e97ab48c92879","2021-01-02 12:00:00"
union select "3d610dc3a2414000","2021-01-01 12:00:00"
;

4、实现

select
t1.dt,
count(distinct if(datediff(t2.dt,t1.dt)=1,t2.user_id,null))/count(distinct t1.user_id) cnt
--count(distinct if(datediff(t2.dt,t1.dt)=7,t2.user_id,null))/count(distinct t1.user_id) cnt 如果求7日留存就是差为7
from
(
    select user_id,date_format(login_time,"yyyy-MM-dd") dt
    from tmp.test_liucun
    where date_format(login_time,"yyyy-MM-dd")>="2021-01-01" and date_format(login_time,"yyyy-MM-dd")<=date_sub("2021-02-01",1)
)t1
left join
(
    select user_id,date_format(login_time,"yyyy-MM-dd") dt
    from tmp.test_liucun
    where date_format(login_time,"yyyy-MM-dd")>="2021-01-02" and date_format(login_time,"yyyy-MM-dd")<="2021-02-01"
)t2
on t1.user_id=t2.user_id and t1.dt<t2.dt
group by t1.dt
;

### 回答1: 使用 Hive 计算次日留存率可以使用以下步骤: 1. 使用 HiveQL 在 Hive 中建立两个表,一个表记录当天的用户数据,另一个表记录第二天的用户数据。 2. 使用 HiveQL 查询语句,在当天用户数据表中筛选出当天新增用户数。 3. 使用 HiveQL 查询语句,在第二天用户数据表中筛选出第二天登录过的用户。 4. 使用 HiveQL JOIN 查询语句,将当天新增用户数据表和第二天登录过的用户数据表进行连接。 5. 使用 HiveQL 统计查询语句,统计连接后的数据中第二天登录过的新增用户数。 6. 使用 HiveQL 计算查询语句,计算次日留存率,公式为:第二天登录过的新增用户数 / 当天新增用户数。 ### 回答2: 使用Hive计算次日留存率的步骤如下: 首先,需要从源数据中提取两天的用户信息,分为第一天的用户和第二天的用户。可以利用Hive的SELECT语句和日期函数来实现这一步骤。例如,SELECT * FROM user_data WHERE date = '2022-01-01'可以提取出第一天的用户信息,SELECT * FROM user_data WHERE date = '2022-01-02'可以提取出第二天的用户信息。在这里,user_data是存储用户数据的表,date是存储日期的字段。 接下来,将第一天的用户信息与第二天的用户信息进行连接操作,根据用户的唯一标识(例如用户ID)进行连接。可以通过Hive的JOIN操作来实现这一步骤。例如,SELECT COUNT(DISTINCT a.user_id) FROM (SELECT * FROM user_data WHERE date = '2022-01-01') a JOIN (SELECT * FROM user_data WHERE date = '2022-01-02') b ON a.user_id = b.user_id可以计算出连接后的用户数。 最后,计算次日留存率次日留存率可以通过将连接后的用户数除以第一天的用户数,并乘以100来计算得出。例如,SELECT (COUNT(DISTINCT a.user_id) / COUNT(DISTINCT b.user_id)) * 100 AS retention_rate FROM (SELECT * FROM user_data WHERE date = '2022-01-01') a JOIN (SELECT * FROM user_data WHERE date = '2022-01-02') b ON a.user_id = b.user_id可以计算出次日留存率。 综上所述,使用Hive计算次日留存率的步骤包括获取第一天和第二天的用户信息,连接两天的用户信息,并计算次日留存率。通过使用Hive的SELECT语句、日期函数和JOIN操作,可以实现这一计算过程。 ### 回答3: Hive是一个基于Hadoop的数据仓库基础设施,用于处理大规模数据集。计算次日留存率可以通过Hive的数据操作和查询功能来实现。 首先,我们需要在Hive中创建一个包含用户活动数据的表。该表的结构可以包含用户ID、日期和活动类型等字段。可以使用Hive的CREATE TABLE语句来定义这个表。 接下来,我们需要编写Hive查询语句来计算次日留存率次日留存率表示在某一天的用户中,有多少比例的用户在第二天仍然活跃。 首先,我们可以使用Hive的GROUP BY语句按照日期分组,并统计每天的用户活动数。然后,我们可以使用自连接(self-join)来将前一天和后一天的数据进行连接。 在连接操作后,我们可以使用Hive的COUNT和条件判断函数来计算前一天的用户和次日仍然活跃的用户数。最后,我们可以计算次日留存率,即次日留存用户数除以前一天的用户数,再乘以100%。 以下是一个类似的Hive查询语句示例: ``` SELECT (COUNT(DISTINCT t1.user_id) / COUNT(DISTINCT t2.user_id)) * 100 as retention_rate FROM table_name t1 JOIN table_name t2 ON t1.user_id = t2.user_id WHERE DATEDIFF(t2.date, t1.date) = 1; ``` 以上查询语句通过自连接将前一天和后一天的数据进行连接,并使用DATEDIFF函数筛选出相差一天的数据。然后,使用COUNT函数和DISTINCT关键字计算前一天和次日仍然活跃的用户数,并通过除法计算次日留存率。 最后,我们可以执行以上Hive查询语句来计算次日留存率。可以使用Hive的INSERT语句将结果插入到另一个表中,以备后续分析和使用。 总而言之,使用Hive计算次日留存率需要创建表、编写Hive查询语句来连接数据并计算留存率。借助Hive的强大功能,我们可以高效地处理大规模的用户活动数据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值