约定求和、Kronecker符号和Levi-Civita符号

math

约定求和、Kronecker符号和Levi-Civita符号

1. 向量的计算

1.1 向量表示

a ⃗ = a 1 e 1 ⃗ + a 2 e 2 ⃗ + a 3 e 3 ⃗ \vec{a} = a_1\vec{e_1} + a_2\vec{e_2} + a_3\vec{e_3} a =a1e1 +a2e2 +a3e3

1.2 向量积

a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a}\cdot\vec{b} = a_1b_1+a_2b_2+a_3b_3 a b =a1b1+a2b2+a3b3

1.3 向量叉乘

a ⃗ × b ⃗ = ( a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ) \vec{a}\times \vec{b} = \left( \begin{aligned} a_2b_3 - a_3b_2\\a_3b_1 - a_1b_3\\a_1b_2-a_2b_1 \end{aligned}\right) a ×b =a2b3a3b2a3b1a1b3a1b2a2b1

2. 求和约定

对于 ∑ i = 1 i a i b i \sum^{i}_{i=1}{a_ib_i} i=1iaibi的求和公式,复杂表达式求和符号表示不方便,因此约定:

  1. a i b i a_ib_i aibi下标相同时,不写 Σ \Sigma Σ符号,自动表示求和;
  2. 只有同一项中出现重复指标时自动求和,只能重复出现两次否则错误,重复出现的为哑指标,出现一次的为自由指标;
  3. 和式相乘指标不能相同。 ∑ i a i b i ∑ j c j d j \sum_i{a_i}{b_i}\sum_j{c_j}{d_j} iaibijcjdj,相乘时候,指标不同可以表示更加清楚的独立性,对爱因斯坦求和表达有好处,上式可以写成 a i b i c j d j a_ib_ic_jd_j aibicjdj.

3. Kronecker符号

向量点积用爱因斯坦求和表示为:
a ⃗ ⋅ b ⃗ = a i b i \vec{a}\cdot\vec{b} = a_ib_i a b =aibi
a i b i a_ib_i aibi 和更一般的 a i b j a_ib_j aibj(其中 i , j i,j i,j都表示三维情况取1到3整数)有什么关系呢。

  • Kronecker函数定义
    δ i j = { 0 i ≠ j 1 i = j \delta_{ij} = \begin{cases} 0 & i\neq j\\1 & i = j\end{cases} δij={ 01i=ji=j

因此:
∑ i = 1 i a i b i = a i b i = δ i j a i b j \sum^i_{i=1}{a_ib_i} = a_ib_i = \delta_{ij}a_ib_j i=1iaibi=aibi=δijaibj
Kronecker符号可以表示一个2x2单位矩阵的所有元素,有了kronecker符号可以方便地表示点积。

4. Kronecker符号的性质

4.1 对于欧式空间 R 3 R^3 R3上的标准正交基 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1},\vec{e_2}, \vec{e_3} e1 ,e2 ,e3 满足右手定则,有:

δ i j = e i ⃗ ⋅ e j ⃗ \delta_{ij} = \vec{e_i}\cdot\vec{e_j} δij=ei ej

4.2 单位矩阵 I ⃗ \vec{I} I :

I ⃗ = ( δ 11 δ 12 δ 13 δ 21 δ 22 δ 23 δ 31 δ 32 δ 33 ) \vec{I} = \left(\begin{matrix} \delta_{11} & \delta_{12} & \delta_{13}\\ \delta_{21} & \delta_{22} & \delta_{23}\\ \delta_{31} & \delta_{32} & \delta_{33}\\ \end{matrix}\right) I =δ11δ21δ31δ12δ22δ32δ13δ23δ33

4.3 有:

δ i m δ m j = δ i j \delta_{im}\delta_{mj} = \delta_{ij} δimδmj=δij
因为上式展开:
δ i m δ m j = δ i 1 δ 1 j + δ i 2 δ 2 j + δ i 3 δ 3 j \begin{aligned} \delta_{im}\delta_{mj} = \delta_{i1}\delta_{1j}+\delta_{i2}\delta_{2j}+\delta_{i3}\delta_{3j}\\ \end{aligned} δimδmj=δi1δ1j+δi2δ2j+δi3δ3j
上式只有在 i , j i,j i,j值相同时才不为0,同时等于1,或者2,或者3的时候才能得到1乘以1的值,结果为1,因此 δ i m δ m j = δ i j \delta_{im}\delta_{mj} = \delta_{ij} δimδmj=δij

4.4 对于某一个基向量 e i ⃗ \vec{e_i} ei 有:

e i ⃗ = ( δ i 1 δ i 2 δ i 3 ) (1.1) \vec{e_i}=\left(\begin{matrix} \delta_{i1}\\\delta_{i2}\\\delta_{i3} \end{matrix}\right)\tag{ {1.1}} ei =δi1δi2δi3(1.1)
上式直接表示了:
( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) \left(\begin{matrix} 1\\0\\0\end{matrix}\right),\left(\begin{matrix} 0\\1\\0\end{matrix}\right),\left(\begin{matrix} 0\\0\\1\end{matrix}\right) 100,010,001
三个基向量。

4.5 对称的有 δ i j = δ j i \delta_{ij} = \delta_{ji} δij=δji

5. Levi-Cevita符号

5.1 Levi-Cevita符号的定义

对于欧式空间 R 3 R^3 R3上的标准正交基 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1},\vec{e_2}, \vec{e_3} e1 ,e2<

  • 31
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值