傅里叶变换的性质

1. 线性性质

F ( ω ) = F [ f ( t ) ] F(\omega) = \mathscr{F}[f(t)] F(ω)=F[f(t)] G ( ω ) = F [ g ( t ) ] G(\omega) = \mathscr{F}[g(t)] G(ω)=F[g(t)]
F [ α f ( t ) + β g ( t ) ] = α F ( ω ) + β G ( ω ) , \mathscr{F}[\alpha f(t) + \beta g(t)] = \alpha F(\omega) + \beta G(\omega), F[αf(t)+βg(t)]=αF(ω)+βG(ω),

F − 1 [ α F ( ω ) + β G ( ω ) ] = α f ( t ) + β g ( t ) ] . \mathscr{F}^{-1} [\alpha F(\omega) + \beta G(\omega)]= \alpha f(t) + \beta g(t)]. F1[αF(ω)+βG(ω)]=αf(t)+βg(t)].

2. 位移性质

F ( ω ) = F [ f ( t ) ] , t 0 , ω 0 F(\omega) = \mathscr{F}[f(t)],t_0,\omega _0 F(ω)=F[f(t)]t0ω0为实常数,则
F [ f ( t − t 0 ) ] = e − j ω t 0 F ( ω ) , \mathscr{F}[f(t-t_0)] = e^{-j\omega t_0}F(\omega), F[f(tt0)]=ejωt0F(ω),
F − 1 [ F ( ω − ω 0 ) ] = e j ω t 0 f ( t ) . \mathscr{F}^{-1}[F(\omega-\omega_0)] = e^{j\omega t_0}f(t). F1[F(ωω0)]=ejωt0f(t).

3. 相似性质

F ( ω ) = F [ f ( t ) ] F(\omega) = \mathscr{F}[f(t)] F(ω)=F[f(t)] a a a为非零常数,则
F [ f ( t ) ] = 1 ∣ a ∣ F ( ω a ) . \mathscr{F}[f(t)] = \frac{1}{|a|}F(\frac{\omega}{a}). F[f(t)]=a1F(aω).

4. 微分性质

lim ⁡ ∣ t ∣ → + ∞ f ( t ) = 0 \lim_{|t| \to +\infty} f(t) = 0 limt+f(t)=0,则
F [ f ′ ( t ) ] = j ω F [ f ( t ) ] , \mathscr{F}[f'(t)] = j\omega\mathscr{F}[f(t)], F[f(t)]=jωF[f(t)],
一般地,若 lim ⁡ ∣ t ∣ → + ∞ f ( k ) ( t ) = 0    ( k = 0 , 1 , 2 , ⋅ ⋅ ⋅ , n − 1 ) \lim_{|t| \to +\infty} f^{(k)}(t) = 0 ~~(k = 0,1,2,···,n-1) limt+f(k)(t)=0  (k=0,1,2,,n1),则
F [ f n ( t ) ] = ( j ω ) n F [ f ( t ) ] . \mathscr{F}[f^{n}(t)] = (j\omega)^n \mathscr{F}[f(t)]. F[fn(t)]=(jω)nF[f(t)].

d d ω F ( ω ) = F [ − j t f ( t ) ] . \frac{d}{d\omega}F(\omega) = \mathscr{F}[-jtf(t)]. dωdF(ω)=F[jtf(t)].

d   n F ( ω ) d ω n = ( − j ) n F [ t n f ( t ) ] . \frac{d^{~n}F(\omega)}{d\omega ^n} =(-j)^n \mathscr{F}[t^nf(t)]. dωnd nF(ω)=(j)nF[tnf(t)].

5. 积分性质

g ( t ) = ∫ − ∞ t f ( t ) d t g(t) = \int_{-\infty}^{t}f(t)dt g(t)=tf(t)dt,若 lim ⁡ ∣ t ∣ → + ∞ g ( t ) = 0 \lim_{|t| \to +\infty} g(t) = 0 limt+g(t)=0,则
F [ g ( t ) ] = 1 j ω F [ f ( t ) ] \mathscr{F}[g(t)] = \frac{1}{j\omega} \mathscr{F}[f(t)] F[g(t)]=jω1F[f(t)]

6. 帕塞瓦尔等式

F ( ω ) = F [ f ( t ) ] F(\omega) = \mathscr{F}[f(t)] F(ω)=F[f(t)],则有
∫ − ∞ + ∞ f 2 ( t ) d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{-\infty}^{+\infty}f^2(t)dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty}|F(\omega)|^2d\omega +f2(t)dt=2π1+F(ω)2dω

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值