拉普拉斯(逆)变换的计算

1. 拉普拉斯正变化

(1)线性性质拆分

适用情况: 函数由多个常见的式子组成

F [ α F ( t ) + β g ( t ) ] = α F ( s ) + β G ( s ) , \mathscr{F}[\alpha F(t) + \beta g(t)] = \alpha F(s) + \beta G(s), F[αF(t)+βg(t)]=αF(s)+βG(s),

(2)微分性质

适用情况: 函数求导后能简化拉普拉斯变换
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) ; \mathscr{L}[f'(t)] = sF(s) - f(0); L[f(t)]=sF(s)f(0);

适用情况:
L [ t f ( t ) ] = − F ′ ( s ) \mathscr{L}[tf(t)] = -F'(s) L[tf(t)]=F(s)

(3)积分性质

适用情况: 1 t \frac{1}{t} t1
L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s \mathscr{L}[\frac{f(t)}{t}] = \int_{s}^{\infty}F(s)ds L[tf(t)]=sF(s)ds

(4)延迟性质

适用情况:
$$

$$

(5)位移性质

适用情况: 含有 e α t e^{\alpha t} eαt的函数
L [ e a t f ( t ) ] = F ( s − a )     ( a 为 一 复 常 数 ) \mathscr{L}[e^{at}f(t)] = F(s-a)~~~(a为一复常数) L[eatf(t)]=F(sa)   (a)
其 中 F ( s ) = L [ f ( t ) ] . 其中F(s) = \mathscr{L}[f(t)]. F(s)=L[f(t)].

2. 拉普拉斯逆变换

(1)线性性质拆分

适用情况: 函数可拆分成多个常见的拉普拉斯变换相加减。

(2)卷积定理

适用情况: F(s)由两个易知像原函数f(t)的函数F_1(s)和F_2(s)相乘
f ( t ) = L − 1 [ F 1 ( s ) ⋅ F 2 ( s ) ] = f 1 ( t ) ∗ f 2 ( t ) f(t) = \mathscr{L}^{-1}[F_1(s)·F_2(s)] = f_1(t) * f_2(t) f(t)=L1[F1(s)F2(s)]=f1(t)f2(t)

(3)留数求解

适用情况: 从函数的分母上易知孤立奇点。
f ( t ) = ∑ k = 1 n R e s [   F ( s ) e s t , s k   ] . f(t) = \sum_{ k =1}^{n}Res[~F(s)e^{st},s_k~]. f(t)=k=1nRes[ F(s)est,sk ].

附录:常见拉普拉斯变化对

在这里插入图片描述

  • 14
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值