1. 调和函数
(1)定义
满足二维拉普拉斯方程的二元实函数。
(2)判断
f(z) = u(x,y) + iv(x,y)在区域D内解析,则实部u和虚部 v(x,y)都是区域D内的调和函数。
2. 共轭调和函数
(1)定义
φ(x,y)ψ(x,y)均为区域D内的调和函数,且满足C-R方程:
∂φ/∂x=∂ψ/∂y
∂ψ/∂x=-∂φ/∂y
则称ψ(x,y)是φ(x,y)的共轭调和函数。
虚部是实部的调和函数。
(2)判断
f(z) = u(x,y) + iv(x,y)在区域D内解析的充要条件是在区域D内,虚部 v(x,y)是实部u的共轭调和函数。
(3)性质
3. 已知调和函数求解析函数
由于解析函数的实部和虚部是共轭调和函数,且共轭调和函数之间存在两个偏微分方程,故通过一个实部或虚部即可求得整个解析函数。