时域形式电路中元件的特性

1. 电阻元件【 R R R

性质:消耗电能。
元件特征:电压和电流的代数关系 f(u, i) = 0;

u ( t ) = R i ( t ) u(t) = R i(t) u(t)=Ri(t)

2. 电容元件【 C C C

(1) 元件特性

q = C u q = Cu q=Cu

C:单位:F(法拉)
当做定律记忆,无法证明。

库伏特性曲线:
在这里插入图片描述

(2) VCR

i ( t ) = C d u ( t ) d t i(t) = C\frac{du(t)}{dt} i(t)=Cdtdu(t)

若电压和电流为非关联参考方向时,公式右边要加“-”。

u ( t ) = u ( t 0 ) + 1 C ∫ t 0 t i d ξ u(t) = u(t_0) + \frac{1}{C} \int_{t_0}^{t}idξ u(t)=u(t0)+C1t0tidξ

此等式来源于电容元件特性的微分
如果过通过iC已知求原函数,注意别忘了常数项。
默认 u ( − ∞ ) u(-\infty) u() = 0

注意:

  1. 电压和电流仍然是随时间变化的。
  2. 倒着看也应该熟悉, 1 C ∫ − ∞ 0 i d ξ = u ( 0 ) \frac{1}{C} \int_{-\infty}^{0}idξ = u(0) C10idξ=u(0)

(3) 存储的电场能量

W C ( t ) = 1 2 C u 2 ( t ) W_C(t) =\frac{1}{2}Cu^2(t) WC(t)=21Cu2(t)

求定积分得到

(4) 串并联

① n个电容串联
1 C e q = 1 C 1 + 1 C 2 + ⋅ ⋅ ⋅ + 1 C n \frac{1}{C_{eq}} = \frac{1}{C_1}+ \frac{1}{C_2} + ··· +\frac{1}{C_n} Ceq1=C11+C21++Cn1

② n个电容并联
C e q = C 1 + C 2 + ⋅ ⋅ ⋅ + C n C_{eq} = C_1 + C_2 +···+C_n Ceq=C1+C2++Cn

3. 电感元件【 L L L

(1) 元件特性

Ψ = L i \mathscr{Ψ} =Li Ψ=Li

(2) VCR

u ( t ) = L d i ( t ) d t u(t) = L\frac{di(t)}{dt} u(t)=Ldtdi(t)

若电压和电流为非关联参考方向,等式右边加“-”负号。

i ( t ) = 1 L ∫ − ∞ t u d ξ = i ( t 0 ) + 1 L ∫ t 0 t u d ξ i(t) = \frac{1}{L}\int_{-\infty}^{t}udξ =i(t_0) + \frac{1}{L}\int_{t_0}^{t}udξ i(t)=L1tudξ=i(t0)+L1t0tudξ

注意:

  1. 电感两端电流和电压是随时间变化的,而且电流的大小与之前所有时刻的电压大小有关。
  2. 动态元件,记忆元件

(3) 存储的磁场能量

W L ( t ) = 1 2 Ψ L 2 ( t ) L W_L(t) = \frac{1}{2} \frac{\mathscr{Ψ}_L^2(t)}{L} WL(t)=21LΨL2(t)

(4) 串并联

① 串联
L e q = L 1 + L 2 + ⋅ ⋅ ⋅ + L n L_{eq} = L_1 + L_2 +···+L_n Leq=L1+L2++Ln
② 并联
1 L e q = 1 L 1 + 1 L 2 + ⋅ ⋅ ⋅ + 1 L n \frac{1}{L_{eq}} = \frac{1}{L_1}+ \frac{1}{L_2} + ··· +\frac{1}{L_n} Leq1=L11+L21++Ln1

4. 电压源【 u u u

电压源地端电压一定或随之间变化,而与电路地具体结构无关。

(1)n个电压源串连:
u S = u S 1 + u S 2 + ⋅ ⋅ ⋅ + u S n u_S =u_{S1} + u_{S2} +···+ u_{Sn} uS=uS1+uS2++uSn

n个电压源的代数和,如果电压的方向与参考方向相反要取负号。

*(2)n个电压源并联:

要求n个电压源电压相等且极性一致,
u S = u S 1 = u S 2 = ⋅ ⋅ ⋅ = u S n u_S = u_{S1} = u_{S2} =···= u_{Sn} uS=uS1=uS2==uSn

如果有某个电压源极性反向,那么就违背了KVL,所以在理论上不成立。
② 任何电阻与电压源并联,电阻当开路线,只看电压源。

5. 电流源【 i i i

n个电流源并联:
i S = i S 1 + i S 2 + ⋅ ⋅ ⋅ + i S n i_S = i_{S1} + i_{S2} +···+ i_{Sn} iS=iS1+iS2++iSn
n个电流源串联:

要求n个电流源电压相等且方向一致,
i S = i S 1 = i S 2 = ⋅ ⋅ ⋅ = i S n i_S = i_{S1} = i_{S2} =···= i_{Sn} iS=iS1=iS2==iSn

如果有某个电流源方向反向,那么就违背了KCL,所以在理论上不成立。

电阻的忽略: 任何电阻与电流源串联,电阻当短路线,只看电流源;
动态元件电容和电感也不影响最终的电流输出。

6. 受控电源

电压控制电压源(VCVS)
电压控制电流源(VCCS)
电流控制电压源(CCVS)
电流控制电流源(CCCS)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值