电路中常用的拉普拉斯变换

1. 正变换

f ( t ) f(t) f(t) [ 0 , ∞ ) [0,\infty) [0,)有定义,则有
F ( s ) = ∫ 0 − ∞ f ( t ) e s t d t F(s) = \int_{0_{-}}^\infty f(t)e^{st}dt F(s)=0f(t)estdt

2. 反变换

  • 步骤一:变换为
    F ( s ) = N ( s ) D ( s ) F(s) = \frac{N(s)}{D(s)} F(s)=D(s)N(s)
    D ( s ) = 0 D(s) = 0 D(s)=0,求其根 p p p

(1) 单根

  • 步骤二:列出带未知数的展开式
    F ( s ) = K 1 s − p 1 + K 2 s − p 2 + K 3 s − p 3 F(s) = \frac{K_1}{s- p_1} + \frac{K_2}{s- p_2} + \frac{K_3}{s- p_3} F(s)=sp1K1+sp2K2+sp3K3

  • 步骤三:依次求出 K i K_i Ki
    K i = N ( s ) D ′ ( s ) ∣ s = p i K_i = \frac{N(s)}{D'(s)}|_{s=p_i} Ki=D(s)N(s)s=pi

  • 步骤四:把求得的 K i K_i Ki p i p_i pi代入步骤二的 F ( s ) F(s) F(s)

  • 步骤五:根据 L 1 [ A s + a ] = A e − a t \mathscr{L}^1[\frac{A}{s + a}] = A e^{-at} L1[s+aA]=Aeat,对每一项依次变换,得到 f ( t ) f(t) f(t)

(2) 共轭复根

p 1 = α + j ω p_1 = \alpha + j\omega p1=α+jω p 2 = α − j ω p_2 = \alpha - j\omega p2=αjω

  • 步骤二:列出带有未知数的结果
    f ( t ) = 2 ∣ K 1 ∣ e a t c o s ( ω + θ 1 ) f(t) = 2|K_1|e^{at}cos(\omega + \theta_1) f(t)=2K1eatcos(ω+θ1)

  • 步骤三:求出 K 1 K_1 K1 θ 1 \theta_1 θ1
    K 1 = N ( s ) D ′ ( s ) ∣ s = a + j ω K_1= \frac{N(s)}{D'(s)}|_{s=a + j\omega} K1=D(s)N(s)s=a+jω
    θ 1 = K 1 的 辅 角 \theta_1 = K_1的辅角 θ1=K1

  • 步骤四:把 K 1 K_1 K1 α \alpha α ω \omega ω θ 1 \theta_1 θ1 代入 f ( t ) f(t) f(t),得最终结果。

(3) 重根

p 1 = p 2 = ⋅ ⋅ ⋅ = p q p_1 = p_2 =··· = p_q p1=p2==pq

  • 步骤二:列出含有未知数的 F ( s ) F(s) F(s)

F ( s ) = K 1 q s − p 1 + K 1 ( q − 1 ) ( s − p 1 ) 2 + ⋅ ⋅ ⋅ + K 11 ( s − p 1 ) q F(s) = \frac{K_{1q}}{s-p_1}+ \frac{K_{1(q-1)}}{(s-p_1)^2}+···+\frac{K_{11}}{(s-p_1)^q} F(s)=sp1K1q+(sp1)2K1(q1)++(sp1)qK11

  • 步骤三:求出 K 11 , K 12 , ⋅ ⋅ ⋅ , K 1 q K_{11},K_{12},···,K_{1q} K11,K12,,K1q
    K 11 = ( s − p 1 ) q F ( s ) ∣ s = p 1 K_{11} = (s-p_1)^qF(s)|_{s = p_1} K11=(sp1)qF(s)s=p1

K 12 = d d s [ ( s − p 1 ) q F ( s ) ] ∣ s = p 1 K_{12} = \frac{d}{ds}[(s-p_1)^qF(s)]|_{s = p_1} K12=dsd[(sp1)qF(s)]s=p1

K 13 = 1 2 d 2 d s 2 [ ( s − p 1 ) q F ( s ) ] ∣ s = p 1 K_{13} = \frac{1}{2} \frac{d^2}{ds^2}[(s-p_1)^qF(s)]|_{s = p_1} K13=21ds2d2[(sp1)qF(s)]s=p1

K 1 q = 1 ( q − 1 ) ! d q − 1 d s q − 1 [ ( s − p 1 ) q F ( s ) ] ∣ s = p 1 K_{1q} = \frac{1}{(q-1)!} \frac{d^{q-1}}{ds^{q-1}}[(s-p_1)^qF(s)]|_{s = p_1} K1q=(q1)!1dsq1dq1[(sp1)qF(s)]s=p1

  • 步骤四:带入 F ( s ) F(s) F(s)

  • 步骤五:依据 L [ 1 ( s + a ) n + 1 ] = 1 n ! t n e − a t \mathscr{L}[\frac{1}{(s+a)^{n+1}}] = \frac{1}{n!}t^ne^{-at} L[(s+a)n+11]=n!1tneat,对 F ( s ) F(s) F(s)进行变换。

附录:拉普拉斯变换表

原函数象函数
1 1 s \frac{1}{s} s1
A e − α t Ae^{-\alpha t} Aeαt A s + α \frac{A}{s+\alpha} s+αA
A δ A\delta Aδ(t)A
A ε A\varepsilon Aε(t) A s \frac{A}{s} sA

在这里插入图片描述
在这里插入图片描述

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值