3.1 题目描述
历史学家小A正在研究一个奇怪的王国的历史。当前阶段的任务是研究该国的交通。
根据这个奇怪的王国的史书记载,史书开始记载前这个王国有 n 个城市(城市从 0 开
始标号),但所有城市之间都没有道路相连。
每一年,在位的国王会修建一条 x 到 y 的双向道路,一条道路可能被修建多次,但不会
修建起点和终点为同一个城市的道路。
而在这之间,国王会计划进行若干次旅行。对于计划进行的一次旅行 st->ed,如果当
时能完成这次旅行,而 t 年前不能完成这次旅行,那么国王会对之前的建设成果感到满意,
否则他会很生气,并在下一次计划旅行前都让史官记录下错误的修建道路的信息,即把 x、
y 记作(x+n-c) mod n,(y+n-c) mod n。
当然在这些年中也发生了若干次国王的交替,初始国王的 c 值为 0,而每个国王的 c 值
不一定相同,但在国王在位期间 c 值不会改变,新上位的国王开始处于不生气的状态。
请根据史书帮助小 A 得出国王每次对于计划旅行是否满意,从而辅助小 A 能够研究该
国的交通信息。
3.2 输入格式
第一行为两个整数 n,m,表示初始城市数和历史书记载的内容数。
接下来 m 行,每行是以下三种格式之一:
1 . K v :表示国王交替,新国王的 c 值为 v
2 . R x y:表示史书上记载的是国王修建了 x 到 y 的双向道路,但注意这个记录的可
能不是实际状况。
3 . T st ed t:表示国王计划进行的一次 st->ed 的旅行,且比较的是 t 年前的情况(国
NOIP 模拟试题 #5
7
王可能会和史书开始记载以前的情况比较),注意这个记录的肯定是实际情况。
注意只有遇到 R 操作才会使年份的计数+1。
3.3 输出格式
输对于每个 T 的记录输出一行,如果此次计划旅行令国王满意,则输出 Y,否则输出 X。
3.4 样例输入
3 7
R 0 1
T 0 1 1
K 1
R 0 1
T 0 1 1
R 0 1
T 0 2 1
3.5 样例输出
Y
N
Y
3 .6 数据范围与约定
对于 30%的数据,保证 n<=1000 ,m<=3000。
另 30%的数据满足没有发生国王的交替。
NOIP 模拟试题 #5
8
对于 100%的数据,保证 n,m<=300000,0<=v,x,y,st,ed<n,0<=t<m。
按秩合并并查集裸题,不进行路径合并,对于每条边有一个时间戳,合并时把小的合到大的上去(比较快)
int find(int x,int t) //按秩合并查询代码
{
while(x!=fat[x]&&tme[x]<=t) x=fat[x];
return x;
}
别用cin,比较慢
#include <iostream>
#include <cstdio>
using namespace std;
int fat[310000],tme[310000],size[310000];
int find(int x,int t)
{
while(x!=fat[x]&&tme[x]<=t) x=fat[x];
return x;
}
int main()
{
int n,m,c=0;
int ti=0;
scanf("%d%d",&n,&m);
bool flag=0;
for(int i=0;i<n;i++)
fat[i]=i,size[i]=1;
for(int i=1;i<=m;i++)
{
char w[3];
scanf("%s",w);
if(w[0]=='K')
scanf("%d",&c),flag=0;
if(w[0]=='R')
{
ti++;
int x,y;
scanf("%d%d",&x,&y);
if(flag)
{
x=(x+c)%n;
y=(y+c)%n;
}
int f1=find(x,ti),f2=find(y,ti);
if(f1==f2) continue;
if(size[f1]>size[f2])
fat[f2]=f1,tme[f2]=ti,size[f1]+=size[f2];
else
fat[f1]=f2,tme[f1]=ti,size[f2]+=size[f1];
}
if(w[0]=='T')
{
int x,y,q;
scanf("%d%d%d",&x,&y,&q);
if((find(x,ti-q)!=find(y,ti-q))&&(find(x,ti)==find(y,ti)))
{
flag=0;
printf("Y\n");
}
else
{
flag=1;
printf("N\n");
}
}
}
}