[模板] NTT快速数论变换

题目分析:

emmm,求两个多项式卷积

题目分析:

FFT能做哇,然而精度和速度…
NTT相对于FFT就是变换了原根。
本博客木有讲解,只有板子qwq

题目链接:

UOJ #34
Luogu 3803

Ac 代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define ll long long
const int maxm=3e6+100,mod=998244353,g=3,gi=332748118;
inline ll fastpow(ll x,int y)
{
    ll ans=1;
    for(;y;y>>=1,x=(x*x)%mod)
     if(y&1) ans=(ans*x)%mod;
    return ans%mod;
} 
int n,m,len;
ll inv,A[maxm],B[maxm],rev[maxm];
inline void NTT(ll *a,int f)
{
    for(int i=0;i<n;i++) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1)
    {
        ll wn=fastpow((f==1)?g:gi,(mod-1)/(i<<1));
        for(int j=0;j<n;j+=(i<<1))
        {
            ll w=1;
            for(int k=0;k<i;k++,w=(w*wn)%mod)
            {
                ll x=a[j+k],y=(w*a[i+j+k])%mod;
                a[j+k]=(x+y)%mod;
                a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(f==-1)
     for(int i=0;i<n;i++) a[i]=(a[i]*inv)%mod;
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++) scanf("%lld",&A[i]),A[i]=(A[i]+mod)%mod;
    for(int i=0;i<=m;i++) scanf("%lld",&B[i]),B[i]=(B[i]+mod)%mod;
    m+=n;
    for(n=1;n<=m;n<<=1) len++;
    inv=fastpow(n,mod-2);
    for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));
    NTT(A,1),NTT(B,1);
    for(int i=0;i<n;i++) A[i]=(A[i]*B[i]+mod)%mod;
    NTT(A,-1);
    for(int i=0;i<=m;i++) printf("%lld ",A[i]);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,想转载就转吧! https://blog.csdn.net/qq_35914587/article/details/79946701
上一篇辛普森自适应积分
下一篇[ZJOI2014] 力
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭