62. Unique Paths
1. 题目
题目链接
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
- Right -> Right -> Down
- Right -> Down -> Right
- Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
2. 题目分析
在一个m*n(注意,这个表示法跟我们平常用的不一样,这是一个n行m列的方格子)的方格子中,一个机器人从左上方到右下方的路径总数。并且机器人只能往右边或者下边走。
3. 解题思路
想要到达点(i,j),机器人只能经过(i-1,j)或者(i,j-1)。到达(i,j)的路径数是,到达(i-1,j))的路径数与到达(i,j-1)的路径数之和。
按照我之前分析的动态规划的思路:
- 首先确定状态,用dp[i][j]表示到达(i,j)的路径总数;
- 初始化,对第0行的所有状态进行初始化,即dp[0][j] = 1;
- 对第0列的所有状态进行初始化,即dp[i][0] = 1;
- 找状态转移方程,dp[i][j] = dp[i-1][j] + dp[i][j-1];
4. 代码实现(java)
package com.algorithm.leetcode.dynamicAllocation;
/**
* Created by 凌 on 2019/1/27.
* 注释:62. Unique Paths
*/
public class UniquePaths {
public static void main(String[] args) {
int m =3;
int n =2;
int result = uniquePaths(m,n);
System.out.println(result);
}
/**
*
* @param m 列数
* @param n 行数
* @return
*/
public static int uniquePaths(int m, int n) {
/*int[][] dp =new int[n+1][m+1];
for (int j = 1; j <= m; j++) {
dp[1][j] = 1;
}
for (int i = 1; i <= n; i++) {
dp[i][1] = 1;
}
for (int i = 2; i <= n; i++) {
for (int j = 2; j <= m; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[n][m];*/
//空间复杂度优化
int[] dp =new int[m+1];
for (int j = 1; j <= m; j++) {
dp[j] = 1;
}
for (int i = 2; i <= n; i++) {
dp[1] = 1;
for (int j = 2; j <= m; j++) {
dp[j] += dp[j-1];
}
}
return dp[m];
}
}