整式递推数列

本文探讨了整式递推数列的概念,如卡特兰数,以及它们与微分有限的关系。整式递推数列可以通过有限多项式数列来描述,而微分有限的数列满足特定的导数关系。此外,文章还讨论了代数形式幂级数的性质,证明了整式递推数列与微分有限性之间的等价,并给出了求解整式递推数列的算法思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

详见钟子谦IOI2019国家集训队论文。
对于无限数列 { a i } \{a_i\} {ai}和有限多项式数列 { P i } \{P_i\} {Pi}满足 P 0 P_0 P0 0 0 0多项式。
若对任意 p > = ∣ { P } ∣ − 1 p>=|\{P\}|-1 p>={P}1 ∑ i = 0 ∣ { P } ∣ − 1 a p − i P i ( p ) \sum_{i=0}^{|\{P\}|-1} a_{p-i}P_i(p) i=0{P}1apiPi(p)
则称 P P P a a a的整式递推式。
对于有限数列 { a i } \{a_i\} {ai}也有此定义。
但是整式递推数列只指可以用 P P P描述的无限数列 { a i } \{a_i\} {ai}
举例:卡特兰数。
C n = 4 n − 2 n + 1 C n − 1 C_n=\frac{4n-2}{n+1}C_{n-1} Cn=n+14n2Cn1

C n ( n + 1 ) − C n − 1 ( 4 n − 2 ) = 0 C_n(n+1)-C_{n-1}(4n-2)=0 Cn(n+1)Cn1(4n2)=0
所以 P 0 ( x ) = x + 1 P_0(x)=x+1 P0(x)=x+1 P 1 ( x ) = 2 − 4 x P_1(x)=2-4x P1(x)=24x的有限多项式数列 { P 0 , P 1 } \{P_0,P_1\} {P0,P1}即为卡特兰数的整式递推式。

整式递推式 { P i } \{ P_i \} {Pi}的阶数为 ∣ P ∣ − 1 |P|-1 P1,其次数为 max ⁡ i = 0 ∣ P ∣ − 1 deg ⁡ P i \max_{i=0}^{|P|-1}\deg{P_i} maxi=0P1degPi

微分有限:多项式 A ( x ) A(x) A(x)为微分有限的当且仅当存在有限多项式数列 { Q } \{Q\} {Q}
满足 Q ∣ Q ∣ − 1 ≠ 0 Q_{|Q|-1}\neq0 QQ1=0(注意我们的数列都是从 0 0 0开始编号的,所以这句话的意思是最后一项非 0 0 0),
∑ i = 0 ∣ Q ∣ − 1 Q i ( x ) A ( i ) ( x ) = 0 \sum_{i=0}^{|Q|-1}Q_i(x)A^{(i)}(x)=0 i=0Q1Qi(x)A(i)(x)=0(其中 A ( i ) ( x ) A^{(i)}(x) A(i)(x) A ( x ) A(x) A(x)关于 x x x i i i次导数)。

代数形式幂级数:先通过那模糊的论文一句话描述猜测:
A ( x ) A(x) A(x)为代数形式幂级数的意思是 A ( x ) A(x) A(x)是一个方程的根。
这个方程的解是多项式 A ( x ) A(x) A(x)
也就是形如 ∑ i = 0 K i ( x ) f ( x ) = 0 \sum_{i=0} K_{i}(x)f(x)=0 i=0Ki(x)f(x)=0,其中 K i ( x ) K_i(x) Ki(x)是有理分式(多项式除多项式)。
最后解出来是 f ( x ) = A ( x ) f(x)=A(x) f(x)=A(x)
如果存在这样一个方程那么 A ( x ) A(x) A(x)就是代数形式幂级数。
也就是 A ( x ) A(x) A(x)在有理分式域上是代数的(但是并不代表 A ( x ) A(x) A(x)是有理分式,但他也可以是)。

定理2.1:
无限数列 { a } \{a\} {a}的普通生成函数为 A ( x ) A(x) A(x),那么其为整式递推数列当且仅当 A ( x ) A(x) A(x)为微分有限的。
证明:
1.充分性:
如果有 ∑ i = 0 m Q i ( x ) A ( i ) ( x ) = 0 \sum_{i=0}^m Q_i(x)A^{(i)}(x)=0 i=0mQi(x)A(i)(x)=0
发现 A ( i ) ( x ) A^{(i)}(x) A(i)(x)其实和 A ( x ) x − i A(x)x^{-i} A(x)xi就是每一项上差一点系数。
推推式子就可以通过 Q i ( x ) Q_i(x) Qi(x)推出其整式递推式。
2.必要性:
发现 A ( i ) ( x ) A^{(i)}(x) A(i)(x)其实和 A ( x ) x − i A(x)x^{-i} A(x)xi就是每一项上差一点系数。
推推式子就可以通过 P i ( x ) P_i(x) Pi(x)推出使其满足微分有限的有限多项式序列 Q i ( x ) Q_i(x) Qi(x)
(不是伪证吧。)

代数形式幂级数均为微分有限的。
)证明:
引理:考虑多项式向量(更严谨的说法是:多项式构成了一个向量空间。)
那么 A ( x ) A(x) A(x)的任意导数那么多个多项式,他们构成的向量空间维数有限,假设为 k k k,那么对于 A ( x ) , A ′ ( x ) , A ′ ′ ( x ) . . . A ( k ) ( x ) A(x),A'(x),A''(x)...A^{(k)}(x) A(x),A(x),A(x)...A(k)(x)他们这 k + 1 k+1 k+1个向量(多项式)就一定线性相关,可以给出一个他们的线性组合 Q i ( x ) Q_i(x) Qi(x)使得 ∑ i = 0 k Q i ( x ) A ( i ) ( x ) = 0 \sum_{i=0}^k Q_i(x)A^{(i)}(x)=0 i=0kQi(x)A(i)(x)=0

首先对于简单的 f ( x ) = x f(x)=x f(x)=x之类的我们可以 (由上一条引理)显然发现他们是微分有限的。

然后我们可以得到对于微分有限形式幂级数 u ( x ) u(x) u(x)和代数形式幂级数 v ( x ) v(x) v(x) u ( v ( x ) ) u(v(x)) u(v(x))在其常数项收敛的意义下(形式幂级数复合常数项不收敛就构不成形式幂级数),也是微分有限的,然后就可以数归地证明所有形式幂级数均为微分有限的。

应用层面:
求出一个数列的整式递推式。
在这里插入图片描述
感觉,。;

例题:
在这里插入图片描述
首先我们可以得到一个 O ( n 5 ) O(n^5) O(n5)左右的大力 D P DP DP
在这里插入图片描述
然后打出表来之后我们可以。
去这里白嫖zzq的模板
然后求出 n < = 1 e 6 n<=1e6 n<=1e6的范围的答案。
。。。
参考代码:

#include<bits/stdc++.h>
#define mod 998244353
#define LL long long
#define rep(i,j,k) for(int i=(j),LIM=(k);i<=LIM;i++) 
using namespace std;

int Pow(int b,int k){ int r=1;for(;k;k>>=1,b=1ll*b*b%mod) if(k&1) r=1ll*r*b%mod; return r; }
vector<vector<int> > find_rel(
const vector<int>& ini,int deg)
{
	int n=ini.size(),B=(n+2)/(deg+2),C=B*(deg+1),R=n-(B-1);
	assert(B>=2&&R>=C-1);
	vector<vector<int> > mat(R,vector<int>(C));
	for(int i=0;i<R;++i)
		for(int j=0;j<B;++j)
			for(int k=0,x=ini[i+j]%mod;k<=deg;++k)
				mat[i][j*(deg+1)+k]=x,x=x*(LL)(i+j)%mod;
	int c=0;
	for(int i=0;i<C;++i)
	{
		int p=-1;
		for(int j=c;j<R;++j) if(mat[j][i]) {p=j; break;}
		if(p==-1) break;
		swap(mat[p],mat[c]);
		LL w=Pow(mat[c][c],mod-2);
		for(int j=i;j<C;++j) mat[c][j]=mat[c][j]*w%mod;
		for(int j=c+1;j<R;++j) if(mat[j][i]) //not fully eliminated
		{
			LL t=mat[j][i];
			for(int k=i;k<C;++k)
				mat[j][k]=(mat[j][k]-mat[i][k]*t)%mod;
		}
		++c;
	}
	assert(c!=C);
	for(int i=c-1;i>=0;--i) if(mat[i][c])
		for(int j=i-1;j>=0;--j)
			mat[j][c]=(mat[j][c]-mat[i][c]*(LL)mat[j][i])%mod;
	int od=c/(deg+1);
	vector<vector<int> > ret(od+1,vector<int>(deg+1));
	ret[0][c%(deg+1)]=1;
	for(int i=c-1;i>=0;--i)
		ret[od-i/(deg+1)][i%(deg+1)]=-mat[i][c];
	for(int i=0;i<=od;++i)
	{
		vector<int> tmp(deg+1);
		for(int k=0;k<=deg;++k)
		{
			LL S=1;
			for(int j=k;j<=deg;++j)
				tmp[k]=(tmp[k]+S*ret[i][j])%mod,
				S=S*(-i)%mod*(j+1)%mod*Pow(j+1-k,mod-2)%mod;
			tmp[k]=(tmp[k]%mod+mod)%mod;
		}
		ret[i]=tmp;
	}
	return ret;
}
int a[4][100005]={{0,0,1,9,55,290,1418,6629,30091,133806,586054,2537370,10886566,46369284,196323476,827082029,474985712,528106312,541758386,595828051,59377087,109000449,755534195,558578043,332657763,629563085,615306569,60402678,105929548,493601184,189333986,389953147,797915382,481229189,420292720,995685669,560845133,516975474,972593286,537377753,364690619,508809028,207371388,387442055,595552026,675655967,43409867,610503018,995841202,883699315,167313459}, {0,0,0,0,14,149,1054,6236,33398,167990,809664,3784560,17289420,77603161,343494418,-493097854,-468248033,104095918,157010208,-115880831,831488755,64373852,112711345,-491592039,-127489852,-177098602,-266045469,233150578,-12173954,294233090,-187126183,134746385,-321149993,-148345218,465153584,-44795846,-533979392,-305848929,-28957884,-253196987,539610500,-254944522,505585010,450780534,-246076482,-32472303,811346038,-265758912,-670036911,-362311751,634820484}, {0,0,0,0,3,98,1074,8245,52812,303340,1621010,8232983,40276667,191487706,-107998677,72391037,327327922,-507090862,-311407461,258624519,-561066175,365152019,-692593286,66360168,507909062,381762652,-248265301,351446733,647281286,-537110773,629992197,-93817477,-406946020,-79571376,-482899551,-44057130,820178765,637207205,-889827567,12730960,-400770744,-237003144,182901450,-795696960,321057984,-451718838,-436709246,353485690,563895810,126132164,-671112947}, {0,0,0,0,0,21,484,5430,44472,304997,1867456,10573956,56564788,289885815,438658583,946463028,822984448,341838670,633606596,893811591,27160201,979478338,875209020,580102669,528317334,663671805,285229136,454142107,887552094,642070688,437542901,898440781,100405302,511509010,392851051,161580714,175762226,863850977,529597727,669267529,559836197,946462699,428001404,55115645,513632905,181210615,146227845,802185240,453391893,421254118,891837190} };
vector<int>v[4]={vector<int>(a[0],a[0]+50),vector<int>(a[1],a[1]+50),vector<int>(a[2],a[2]+50),vector<int>(a[3],a[3]+50)};

int main(){
	int n,m;scanf("%d%d",&n,&m);
	vector<vector<int> >r=find_rel(v[m],7);
	printf("%d\n",r.size());
	rep(i,49,n){
		int s=0;
		rep(k,1,r.size()-1){
			vector<int>&u=r[k];
			int t=1;
			rep(j,0,u.size()-1){
				s=(s-1ll*t*a[m][i-k]%mod*u[j])%mod;
				t=1ll*t*i%mod;
			}
		}
		vector<int>&u=r[0];
		int t=1,sm=0;
		rep(j,0,u.size()-1){
			sm=(sm+1ll*t*u[j])%mod;
			t=1ll*t*i%mod;	
		}
		a[m][i]=Pow(sm,mod-2)*1ll*s%mod;
	}
	printf("%d\n",(a[m][n]+mod)%mod);
}

留tag:这个模板我想把它压到20行以内,
但是我不懂它在写些什么。。。

所以,今天开始啃Enumerative Combinatorics Volume 2:第6章。
在这里插入图片描述
这是有理分式的定义,指一个形式幂级数可以被表示为一个一次幂级数方程的根。
在这里插入图片描述
所以有理分式域就是拓展拉格朗日反演证明里那个奇怪的域?
在这里插入图片描述
来啦来啦代数形式幂级数、
在这里插入图片描述
开始了, D − f i n i t e D-finite Dfinite微分有限 P − r e c u r s i v e P-recursive Precursive多项式递归函数大赏。
在这里插入图片描述

但是 u 1 , u 2 , u 4 u_1,u_2,u_4 u1,u2,u4不是 D − f i n i t e D-finite Dfinite的。。。
在这里插入图片描述
复合法则。

撒花!
终于压进20行了。
顺便说下 z z q zzq zzq那不觉明历的写法是什么意思。
首先我们需要把待定的整式递推式倒过来写(论文应该是打错了字),建立每个 a i a_i ai和之后若干 ( B − 1 B-1 B1)个的整式方程,于是形如 ∑ i = 0 B − 1 a k + i Q B − 1 − i = 0 \sum_{i=0}^{B-1} a_{k+i}Q_{B-1-i}=0 i=0B1ak+iQB1i=0,这是因为我们不知道求出的最短整式递推式长度是多少,换成从前到后的形式可以保证不管求出的整式递推式长度为多少,对于前面几项它都应该是满足的,如果从后往前那么就有不满足前面几项的可能。
然后就直接高斯消元?
但是你要发现,我们这些方程的右边都是 0 0 0
稍微学学线性代数的入门课程即可发现,我们需要的是一个非平凡解(就是非全 0 0 0解),而在这种方程组中非平凡解存在就必须要有自由元,其构成的矩阵不满秩。
那么我们按翻转后的 Q Q Q数组从前往后高斯消元,那么得到一个自由元时,前面的子矩阵就是最小的不满秩前缀矩阵(语无伦次)。
那么我们把这个最小的不满秩前缀矩阵,令其中唯一的自由元为1。
注意这个自由元对应在 ∑ i = 0 B − 1 a k + i Q B − 1 − i = 0 \sum_{i=0}^{B-1} a_{k+i}Q_{B-1-i}=0 i=0B1ak+iQB1i=0中应该是 Q 0 Q_0 Q0中的一个 x k x^k xk前的系数。
这时把前面的元都解出来可以得到 Q Q Q,再二项式定理得到 P P P即可。
注意这时求出的很有可能是该次数下最小阶的(最短的)。
可能求出多个阶数不同的整式递推式,但是阶数变短是需要次数提升作为代价的。
另外模板里确定 B B B的那个奇怪的式子是 M i n 25 \mathrm{\color{black}M\color{red}in_{25}} Min25提出来的。(我也不太懂日语)
在这里插入图片描述

20行模板:

#include<bits/stdc++.h>
#define mod 998244353
#define LL long long
#define rep(i,j,k) for(int i=(j),LIM=(k);i<=LIM;i++) 
#define per(i,j,k) for(int i=(j),LIM=(k);i>=LIM;i--)
#define vc vector
#define vi vc<int>
#define Ct const
using namespace std;

int Pow(int b,int k){ int r=1;for(;k;k>>=1,b=1ll*b*b%mod) if(k&1) r=1ll*r*b%mod; return r; }
vc<vi>PR(Ct vi &a,int D){ // P-recursive , a[0~a.size()-1] is usd
	int N=a.size(),B=(N+2)/(D+2),C=B*(D+1),R=N-(B-1),c;
	vc<vi>b(R,vi(C));
	rep(i,0,R-1) rep(j,0,B-1) for(int k=0,pw=a[i+j];k<=D;k++,pw=(LL)pw*i%mod) b[i][j*(D+1)+k]=pw;
	rep(i,0,C-1){
		int p=-1;rep(j,i,R-1) if(b[j][i]) {p=j;break;}
		if(p==-1){ c=i;break;}swap(b[i],b[p]);
		p=Pow(b[i][i],mod-2);rep(j,i,C-1) b[i][j]=(LL)b[i][j]*p%mod;
		rep(j,i+1,R-1) if(p=b[j][i]) rep(k,i,C-1) b[j][k]=(b[j][k]-(LL)b[i][k]*p)%mod; 
	}assert(c^C);
	int M=c/(D+1)+1;
	per(i,c-1,0) if(b[i][c]) rep(j,0,i-1) b[j][c]=(b[j][c]-(LL)b[j][i]*b[i][c])%mod;
	vc<vi>r(M,vi(D+1));vi t(D+1);
	rep(i,(r[0][c%(D+1)]=1,0),c-1) r[M-i/(D+1)-1][i%(D+1)]=-b[i][c];
	for(int i=0,S;i<M;r[i]=t,t=vi(D+1),i++)
		rep(j,0,D) rep(k,(S=1,j),D){
				t[j]=(t[j]+(LL)S*r[i][k])%mod;
				S=(LL)S*(-M+1)%mod*(k+1)%mod*Pow(k-j+1,mod-2)%mod;
			}
	return r;
}

快速求整式递推数列的第 n n n项:
看洛谷的【模板】整式递推

# 国家集训队论文列表(1999-2019) ___点击目录快速跳转:___ - _国家集训队论文列表(1999-2019)_ * [_1999_](#1999) * [_2000_](#2000) * [_2001_](#2001) * [_2002_](#2002) * [_2003_](#2003) * [_2004_](#2004) * [_2005_](#2005) * [_2006_](#2006) * [_2007_](#2007) * [_2008_](#2008) * [_2009_](#2009) * _2010~2012:组委会暂停论文答辩项目_ * [_2013_](#2013) * [_2014_](#2014) * [_2015_](#2015) * [_2016_](#2016) * [_2017_](#2017) * [_2018_](#2018) * [_2019_](#2019) - _论文分类汇总(1999-2009)_ * [组合数学](#组合数学) + [计数与统计](#计数与统计) + [数位问题](#数位问题) + [动态统计](#动态统计) + [博弈](#博弈) + [母函数](#母函数) + [拟阵](#拟阵) + [线性规划](#线性规划) + [置换群](#置换群) + [问答交互](#问答交互) + [猜数问题](#猜数问题) * [数据结构](#数据结构) + [数据结构](#数据结构-1) + [结构联合](#结构联合) + [块状链表](#块状链表) + [动态树](#动态树) + [左偏树](#左偏树) + [跳表](#跳表) + [SBT](#sbt) + [线段树](#线段树) + [单调队列](#单调队列) + [哈希表](#哈希表) + [Splay](#splay) * [图论](#图论) + [图论](#图论-1) + [模型建立](#模型建立) + [网络流](#网络流) + [最短路](#最短路) + [欧拉路](#欧拉路) + [差分约束系统](#差分约束系统) + [平面图](#平面图) + [2-SAT](#2-sat) + [最小生成树](#最小生成树) + [二分图](#二分图) + [Voronoi图](#voronoi图) + [偶图](#偶图) * [树](#树) + [树](#树-1) + [路径问题](#路径问题) + [最近公共祖先](#最近公共祖先) + [划分问题](#划分问题) * [数论](#数论) + [欧几里得算法](#欧几里得算法) + [同余方程](#同余方程) * [搜索](#搜索) + [搜索](#搜索-1) + [启发式](#启发式) + [优化](#优化) * [背包问题](#背包问题) * [匹配](#匹配) * [概率](#概率) + [概率](#概率-1) + [数学期望](#数学期望) * [字符串](#字符串) + [字符串](#字符串-1) + [多串匹配](#多串匹配) + [后缀数组](#后缀数组) + [字符串匹配](#字符串匹配) * [动态规划](#动态规划) + [动态规划](#动态规划-1) + [状态压缩](#状态压缩) + [状态设计](#状态设计) + [树形DP](#树形dp) + [优化](#优化-1) * [计算几何](#计算几何) + [立体几何](#立体几何) + [计算几何思想](#计算几何思想) + [圆](#圆) + [半平面交](#半平面交) * [矩阵](#矩阵) + [矩阵](#矩阵-1) + [高斯消元](#高斯消元) * [数学方法](#数学方法) + [数学思想](#数学思想) + [数学归纳法](#数学归纳法) + [多项式](#多项式) + [数形结合](#数形结合) + [黄金分割](#黄金分割) * [其他算法](#其他算法) + [遗传算法](#遗传算法) + [信息论](#信息论) + [染色与构造](#染色与构造) * [一类问题](#一类问题) + [区间](#区间) + [序](#序) + [系](#系) + [物理问题](#物理问题) + [编码与译码](#编码与译码) + [对策问题](#对策问题) * [优化](#优化-2) + [算法优化](#算法优化) + [程序优化](#程序优化) + [语言](#语言) * [策略](#策略) + [策略](#策略-1) + [倍增](#倍增) + [二分](#二分) + [调整](#调整) + [随机化](#随机化) + [非完美算法](#非完美算法) + [提交答案题](#提交答案题) + [守恒思想](#守恒思想) + [极限法](#极限法) + [贪心](#贪心) + [压缩法](#压缩法) + [逆向思维](#逆向思维) + [穷举](#穷举) + [目标转换](#目标转换) + [类比](#类比) + [分割与合并](#分割与合并) + [平衡思想](#平衡思想) Table of contents generated with markdown-toc --- ## 1999 陈 宏 -《数据结构的选择与算法效率——从IOI98试题PICTURE谈起》 来煜坤 -《把握本质,灵活运用——动态规划的深入探讨》 齐 鑫 -《搜索方法中的剪枝优化》 邵 铮 -《数学模型的建立、比较和应用》 石润婷 -《隐蔽化、多维化、开放化──论当今信息学竞赛中数学建模的灵活性》 杨 帆 -《准确性、全面性、美观性——测试数据设计中的三要素》 周咏基 -《论随机化算法的原理与设计》 ## 2000 陈 彧 《信息学竞赛中的思维方法》 方 奇 《动态规划》 高寒蕊 -《递推关系的建立及在信息学竞赛中的应用》 郭 一 -《数学模型及其在信息学竞赛中的应用》 江 鹏 -《探索构造法解题模式》 李 刚 -《动态规划的深入讨论》 龙 翀 -《解决空间规模问题的几种常用的存储结构》 骆 骥 -《数学模型的建立和选择》 施 遥 -《人工智能在围棋程序中的应用》 肖 洲 -《数据结构的在程序设计中的应用》 谢 婧 -《规模化问题的解题策略》 徐 串 -《论程序的调试技巧》 徐 静 -《图论模型的建立与转化》 杨江明 -《论数学策略在信息学问题中的应用》 杨 培 -《非最优化算法初探》 张 辰 -《动态规划的特点及其应用》 张 力 -《类比思想在解题中的应用》 张一飞 -《冗繁削尽留清瘦——浅谈信息的充分利用》 ## 2001 高寒蕊 -《从圆桌问题谈数据结构的综合运用》 符文杰 -《Pólya原理及其应用》 高 岳 -《中等硬度解题报告》 江 鹏 -《从一道题目的解法试谈网络流的构造与算法》 刘汝佳 -《搬运工问题的启示》 李益明 -《计算几何的相关问题》 李 源 -《树的枚举》 骆 骥 -《由"汽车问题"浅谈深度搜索的一个方面——搜索对象与策略的重要性》 毛子青 -《动态规划算法的优化技巧》 俞 玮 -《基本动态规划问题的扩展》 张一飞 -《求N!的高精度算法》 ## 2002 戴德承 -《退一步海阔天空——"目标转化思想"的若干应用》 方 奇 -《浅谈必要条件的应用》 符文杰 -《排序网络》 何江舟 -《用高斯消元法解线性方程组》 何 林 -《猜想及其应用》 黄 芸 -《POI0110 跳舞蝇》 金 恺 -《浅谈网络流算法的应用》 李澎煦 -《半平面交的算法及其应用》 李 睿 -《二分法与统计问题》 骆 骥 -《浅析解 "对策问题" 的两种思路——从《取石子》问题谈起》 孙方成 -《偶图的算法及应用》 孙林春 -《让我们做得更好——从《Parity》的解法谈程序的优化》 王知昆 -《搜索顺序的选择》 许智磊 -《二分,再二分!――从Mobiles(IOI 2001)一题看多重二分》 杨旻旻 -《构造法——解题的最短路径》 张家琳 -《多项式乘法》 张 宁 -《遗传算法的特点及其应用》 张一飞 -《由感性认识到理性认识——透析一类搏弈游戏的解答过程》 周文超 -《树结构在程序设计中的运用》 ## 2003 方 奇 -《染色法和构造法在棋盘上的应用》 高正宇 -《答案只有一个——浅谈问答式交互问题》 何 林 -《一类称球问题的解法》 侯启明 -《信息论在信息学竞赛中的简单应用》 姜尚仆 -《模线性方程的应用——用数论方法解决整数问题》 金 恺 -《探寻深度优先搜索中的优化技巧——从正方形剖分问题谈起》 雷环中 -《结果提交类问题》 林希德 -《求最大重复子串》 刘才良 -《平面图在信息学中的应用》 刘一鸣 -《一类搜索的优化思想——数据有序化》 陆可昱 -《长方体体积并》 饶向荣 -《病毒的DNA——剖析一道字符匹配问题解析过程》 邵烜程 -《数学思想助你一臂之力》 王知昆 -《浅谈用极大化思想解决最大子矩形问题》 伍 昱 -《由对称性解2-SAT问题》 项荣璟 -《充分利用问题性质——例析动态规划的"个性化"优化》 许智磊 -《浅谈补集转化思想在统计问题中的应用》 张 宁 -《猜数问题的研究》 张云亮 -《论对算法的选择》 周 源 -《浅析"最小表示法"思想在字符串循环同构问题中的应用》 ## 2004 何 林 -《信息学中守恒法的应用》 胡伟栋 -《减少冗余与算法优化》 金 恺 -《极限法——解决几何最优化问题的捷径》 李锐喆 -《细节——不可忽视的要素》 鬲 融 -《浅谈特殊穷举思想的应用》 周 源 -《浅谈数形结合思想在信息学竞赛中的应用》 朱晨光 -《优化,再优化!》 肖 天 -《"分层图思想"及其在信息学竞赛中的应用》 汪 汀 -《最小生成树问题的拓展》 吴景岳 -《最小生成树算法及其应用》 栗 师 -《转化目标在解题中的应用》 薛 矛 -《解决动态统计问题的两把利刃》 黄源河 -《浅谈图论模型的建立与应用》 楼天城 -《匹配算法在搜索问题中的应用》 贝小辉 -《浅析树的划分问题》 林 涛 -《线段树的应用》 杨思雨 -《伸展树的基本操作与应用》 许智磊 -《后缀数组》 朱泽园 -《多串匹配算法及其启示》 韩文弢 -《论C++语言在信息学竞赛中的应用》 ## 2005 龙 凡 -《序的应用》 魏 冉 -《浅谈“跳跃表”的相关操作及其应用》 任 恺 -《图论的基本思想及方法》 杨 俊 -《二分策略在信息学竞赛中的应用》 张伟达 -《用改进算法的思想解决规模维数增大的问题》 黄 刚 -《数据结构的联合》 杨 弋 -《从“小H的小屋”的解法谈算法的优化》 朱晨光 -《浅析倍增思想在信息学竞赛中的应用》 李羽修 -《Hash函数的设计优化》 王 俊 -《浅析二分图匹配在信息学竞赛中的应用》 唐文斌 -《正难则反——浅谈逆向思维在解题中的应用》 黄源河 -《左偏树的特点及其应用》 钱自强 -《遗传算法应用的分析与研究》 杨思雨 -《浅谈“黄金分割”和信息学的联系》 潘震皓 -《置换群快速幂运算研究与探讨》 胡伟栋 -《非完美算法在信息学竞赛中的应用》 何 林 -《数据关系的简化》 汪 汀 -《参数搜索的应用》 周 源 -《浅谈信息学竞赛中的“压缩法”》 朱泽园 -《回到起点 ----《一种突破性思维》 ## 2006 陈启峰 -《“约制、放宽”方法在解题中的应用》 陈首元 -《维护森林连通性——动态树》 冯 威 -《数与图的完美结合——浅析差分约束系统》 高逸涵 -《对于一道题目的深入分析》 胡伟栋 -《演讲的若干建议》 黄劲松 -《贪婪的动态规划》 黄晓愉 -《深度优先搜索问题的优化技巧》 贾 由 -《由图论算法浅析算法优化》 李天翼 -《从特殊情况考虑》 龙 凡 -《一类猜数问题的研究》 汤 泽 -《浅析队列在一类单调性问题中的应用》 唐文斌 -《“调整”思想在信息学中的应用》 汪 晔 -《信息学中的参考系与坐标系》 王 栋 -《浅析平面Voronoi图的构造及应用》 王 赟 -《Trie图的构建、活用与改进》 余远铭 -《最短路算法及其应用》 俞 鑫 -《棋盘中的棋盘——浅谈棋盘的分割思想》 周戈林 -《浅谈类比思想》 周以苏 -《论反汇编在时间常数优化中的应用》 朱晨光 -《基本数据结构在信息学竞赛中的应用》 朱泽园 -《半平面交的新算法及其实用价值》 ## 2007 高逸涵 -《与圆有关的离散化》 王晓珂 -《解析一类组合游戏》 仇荣琦 -《欧拉回路性质与应用探究》 余江伟 -《如何解决动态统计问题》 杨 沐 -《浅析信息学中的“分”与“合”》 李宇骞 -《浅谈信息学竞赛中的线性规划——简洁高效的单纯形法实现与应用》 袁昕颢 -《动态树及其应用》 杨 哲 -《凸完全单调性的加强与应用》 王欣上 -《浅谈基于分层思想的网络流算法》 陈启峰 -《Size Balanced Tree》 杨 弋 -《Hash在信息学竞赛中的一类应用》 古 楠 -《平面嵌入》 郭华阳 -《RMQ与LCA问题》 刘雨辰 -《对拟阵的初步研究》 陈 雪 -《问题中的变与不变》 何 森 -《浅谈数据的合理组织》 胡伯涛 -《最小割模型在信息学竞赛中的应用》 陈瑜希 -《多角度思考创造性思维——运用树型动态规划解题的思路和方法探析》 周 冬 -《生成树的计数及其应用》 刘家骅 -《浅谈随机化在信息学竞赛中的应用》 ## 2008 曹钦翔 -《数据结构的提炼与压缩》 郑 暾 -《平衡规划——浅析一类平衡思想的应用》 刘 弈 -《浅谈信息学中状态的合理设计与应用》 顾 研 -《浅谈随机化思想在几何问题中的应用》 周梦宇 -《码之道——浅谈信息学竞赛中的编码与译码问题》 肖汉骏 -《例谈信息学竞赛分析中的“深”与“广”》 方 戈 -《浅析信息学竞赛中一类与物理有关的问题》 吕子鉷 -《浅谈最短径路问题中的分层思想》 周小博 -《浅谈信息学竞赛中的区间问题》 俞华程 -《矩阵乘法在信息学中的应用》 程芃祺 -《计算几何中的二分思想》 高逸涵 -《部分贪心思想在信息学竞赛中的应用》 **陈丹琦 -《基于连通性状态压缩的动态规划问题》** 张煜承 -《一类算法复合的方法》 陈瑜希 -《Pólya计数法的应用》 余林韵 -《运用化归思想解决信息学中的数列问题》 任一恒 -《非完美算法初探》 高亦陶 -《从立体几何问题看降低编程复杂度》 **苏 煜 -《对块状链表的一点研究》** 周 冬 -《两极相通——浅析最大—最小定理在信息学竞赛中的应用》 ## 2009 武 森 -《浅谈信息学竞赛中的“0”和“1”》 **贾志豪 -《组合游戏略述——浅谈SG游戏的若干拓展及变形》** 徐持衡 -《浅谈几类背包题》 骆可强 -《论程序底层优化的一些方法与技巧》 刘 聪 -《浅谈数位类统计问题》 **李骥扬 -《线段跳表——跳表的一个拓展》** 汤可因 -《浅析竞赛中一类数学期望问题的解决方法》 徐源盛 -《对一类动态规划问题的研究》 张昆玮 -《数学归纳法与解题之道》 漆子超 -《分治算法在树的路径问题中的应用》 罗穗骞 -《后缀数组——处理字符串的有力工具》 **方展鹏 -《浅谈如何解决不平等博弈问题》** 姜碧野 -《SPFA算法的优化及应用》 **毛杰明 -《母函数的性质及应用》** 董华星 -《浅析字母树在信息学竞赛中的应用》 梅诗珂 -《信息学竞赛中概率问题求解初探》 高逸涵 -《数位计数问题解法研究》 周而进 -《浅谈估价函数在信息学竞赛中的应用》 金 斌 -《欧几里得算法的应用》 曹钦翔 -《从“k倍动态减法游戏”出发探究一类组合游戏问题》 ## 2010~2012:组委会暂停论文答辩项目 ## 2013 彭天翼 -《登顶计划》 王康宁 -《方格取数》 罗 干 -《Two strings 试题讨论》 张闻涛 -《Catch The Penguins》 罗剑桥 -《浅谈分块思想在一类数据处理问题中的应用》 乔明达 -《搜索问题中的meet in the middle技巧》 胡渊鸣 -《浅析信息学竞赛中概率论的基础与应用》 许昊然 -《浅谈数据结构题的几个非经典解法》 陈立杰 -《重量平衡树和后缀平衡树在信息学奥赛中的应用》 高胜寒 -《浅谈环状计数问题》 王子昱 -《分块方法的应用》 王 迪 -《浅谈容斥原理》 ## 2014 王子昱 -《MSS 命题报告》 余行江 -《矩阵 命题报告》 董宏华 -《多变的多边形》 岑若虚 -《对置换群有关算法的初步研究》 匡正非 -《浅谈线性相关》 张恒捷 -《关于三维最小乘积生成树的一些研究》 徐 毅 -《浅谈回文子串问题》 梁泽宇 - 《浅谈维护多维数组的方法在数据结构题中的应用》 **王悦同 -《根号算法——不只是分块》** **黄志翱 -《浅谈动态树的相关问题及简单拓展》** **胡泽聪 -《随机化算法在信息学竞赛中的应用》** **何 琦 -《精细地实现程序——浅谈OI竞赛中的常数优化》** **沈 洋 -《回归本源——位运算及其应用》** **俞鼎力 -《寻找第 k 优解的几种方法》** ## 2015 刘研绎 -《后缀自动机在字典树上的拓展》 **任之洲 -《浅谈启发式思想在信息学竞赛中的应用》** 王鉴浩 -《浅谈字符串匹配的几种方法》 张天扬 -《后缀自动机及其应用》 金 策 -《生成函数的运算与组合计数问题》 刘剑成 -《YDC的奖金命题报告》 邹逍遥 -《浅谈分块在一类在线问题中的应用》 王逸松 -《仙人掌相关算法及其应用》 陈胤伯 -《浅谈图的匹配算法及其应用》 陈思禹 -《浅谈信息学竞赛中的物理问题》 于纪平 -《丢失的题面命题报告》 张恒捷 -《DP的一些优化技巧》 杜瑜皓 -《Product命题报告》 卢啸尘 -《关于以源代码为输入的一类问题的初步探索》 吕凯风 -《集合幂级数的性质与应用及其快速算法》 ## 2016 **任之洲 -《积性函数求和的几种方法》** **姜志豪 -《网络流的一些建模方法》** 董克凡 -《浅谈线性规划与对偶问题》 王文涛 -《浅谈无向图最小割问题的一些算法及应用》 邹逍遥 -《浅谈线性规划在信息学竞赛中的应用》 **吉如一 -《区间最值操作与历史最值问题》** **毛 啸 -《再探快速傅里叶变换》** **罗哲正 -《从Unknown谈一类支持末尾插入删除的区间信息维护方法》** 洪华敦 -《小C的后缀数组命题报告》 张浩威 -《消消看 命题报告》 李子豪 -《《strakf》命题报告》 汪文潇 -《《过去的集合》命题报告》 **吴作凡 -《火车司机出秦川 命题报告》** 金 策 -《基础排序算法练习题》 袁宇韬 -《move命题报告》 ## 2017 毛 啸 -《关于数列递归式的一些研究》 **杨家齐 -《基于线性代数的一般图匹配》** 袁宇韬 -《多项式求和》 **钟知闲 -《浅谈信息学竞赛中的独立集问题》** 陈俊锟 -《“神奇的子图”命题报告及其拓展》 孙耀峰 -《动态传递闭包问题的探究》 汪乐平 -《“A+B Problem”命题报告》 **徐明宽 -《非常规大小分块算法初探》** 翁文涛 -《回文树及其应用》 闫书弈 -《“黑白树”命题报告》 杨景钦 -《“正多边形”命题报告》 冯 哲 -《浅谈决策单调性动态规划的线性解法》 沈 睿 -《“被操纵的线段树”命题报告》 赵晟宇 -《计算机逻辑与艺术初探——基于逻辑的钢琴演奏音符力度模型》 洪华敦 -《“基因组重构”命题报告》 ## 2018 杨懋龙 - 《浅谈生成函数在掷骰子问题上的应用》 陈江伦 - 《“后缀树结点数”命题报告及一类区间问题的优化》 高睿泉 - 《浅谈保序回归问题》 吴瑾昭 - 《“Fim 4”命题报告》 任轩笛 - 《解决树上连通块问题的一些技巧和工具》 梁晏成 - 《“Jellyfish”命题报告及拓展探究》 王思齐 - 《LeafyTree及其实现的加权平衡树》 陈嘉乐 - 《“小H爱染色”命题报告》 朱震霆 - 《一些特殊的数论函数求和问题》 刘承奥 - 《浅谈DFT在信息学竞赛中的应用》 林旭恒 - 《“完美的队列”命题报告》 杨乾澜 - 《浅谈拟阵的一些拓展及其应用》 董炜隽 - 《浅谈Splay与Treap的性质及其应用》 何中天 - 《“最小方差生成树”命题报告》 陈 通 - 《欧拉图相关的生成与计数问题探究》 ## 2019 钟子谦 - 《两类递推数列的性质和应用》 王修涵 - 《浅谈图模型上的随机游走问题》 杨骏昭 - 《“小水题”命题报告》 高嘉煊 - 《浅谈图的点着色问题》 戴 言 - 《浅谈格路计数相关问题》 李佳衡 - 《算法竞赛中一些数论问题的推广与高斯整数初探》 范致远 - 《“基础圆方树练习题”命题报告》 徐翊轩 - 《“整点计数”命题报告以及对高斯整数的若干研究》 张哲宇 - 《浅谈树上分治算法》 吴思扬 - 《“组合数求和”命题报告》 王思齐 - 《浅谈一类简洁数据结构》 陈孙立 - 《子串周期查询问题的相关算法及其应用》 吴作同 - 《“公园”命题报告》 孔朝哲 - 《浅谈可追溯化数据结构》 袁方舟 - 《浅谈杨氏矩阵在信息学竞赛中的应用》 ## 推荐文章 许智磊 -《后缀数组》 罗穗骞 -《后缀数组——处理字符串的有力工具》 朱泽园 -《半平面交的新算法及其实用价值》 胡伯涛 -《最小割模型在信息学竞赛中的应用》 方展鹏 -《浅谈如何解决不平等博弈问题》 陈丹琦 -《基于连通性状态压缩的动态规划问题》 贾志豪 -《组合游戏略述——浅谈SG游戏的若干拓展及变形》 武 森 -《浅谈信息学竞赛中的“0”和“1”》 李骥扬 -《线段跳表——跳表的一个拓展》 周 源 -《浅析"最小表示法"思想在字符串循环同构问题中的应用》 高逸涵 -《数位计数问题解法研究》 张昆玮 -《数学归纳法与解题之道》 漆子超 -《分治算法在树的路径问题中的应用》 俞华程 -《矩阵乘法在信息学中的应用》 陈瑜希 -《Pólya计数法的应用》 # 论文分类汇总(1999-2009) ## 组合数学 ### 计数与统计 2001 - 符文杰:《Pólya原理及其应用》 2003 - 许智磊:《浅谈补集转化思想在统计问题中的应用》 2007 - 周冬:《生成树的计数及其应用》 2008 - 陈瑜希《Pólya计数法的应用》 ### 数位问题 2009 - 高逸涵《数位计数问题解法研究》 2009 - 刘聪《浅谈数位类统计问题》 ### 动态统计 2004 - 薛矛:《解决动态统计问题的两把利刃》 2007 - 余江伟:《如何解决动态统计问题》 ### 博弈 2002 - 张一飞:《由感性认识到理性认识——透析一类搏弈游戏的解答过程》 2007 - 王晓珂:《解析一类组合游戏》 2009 - 曹钦翔《从“k倍动态减法游戏”出发探究一类组合游戏问题》 2009 - 方展鹏《浅谈如何解决不平等博弈问题》 2009 - 贾志豪《组合游戏略述——浅谈SG游戏的若干拓展及变形》 ### 母函数 2009 - 毛杰明《母函数的性质及应用》 ### 拟阵 2007 - 刘雨辰:《对拟阵的初步研究》 ### 线性规划 2007 - 李宇骞:《浅谈信息学竞赛中的线性规划——简洁高效的单纯形法实现与应用》 ### 置换群 2005 - 潘震皓:《置换群快速幂运算研究与探讨》 ### 问答交互 2003 - 高正宇:《答案只有一个——浅谈问答式交互问题》 ### 猜数问题 2003 - 张宁:《猜数问题的研究:一题的推广》 2006 - 龙凡:《一类猜数问题的研究》 ## 数据结构 ### 数据结构 2005 - 何林:《数据关系的简化》 2006 - 朱晨光:《基本数据结构在信息学竞赛中的应用》 2007 - 何森:《浅谈数据的合理组织》 2008 - 曹钦翔《数据结构的提炼与压缩》 ### 结构联合 2001 - 高寒蕊:《从圆桌问题谈数据结构的综合运用》 2005 - 黄刚:《数据结构的联合》 ### 块状链表 2005 - 蒋炎岩:《数据结构的联合——块状链表》 2008 - 苏煜《对块状链表的一点研究》 ### 动态树 2006 - 陈首元:《维护森林连通性——动态树》 2007 - 袁昕颢:《动态树及其应用》 ### 左偏树 2005 - 黄源河:《左偏树的特点及其应用》 ### 跳表 2005 - 魏冉:《让算法的效率“跳起来”!——浅谈“跳跃表”的相关操作及其应用》 2009 - 李骥扬《线段跳表——跳表的一个拓展》 ### SBT 2007 - 陈启峰:《Size Balance Tree》 ### 线段树 2004 - 林涛:《线段树的应用》 ### 单调队列 2006 - 汤泽:《浅析队列在一类单调性问题中的应用》 ### 哈希表 2005 - 李羽修:《Hash函数的设计优化》 2007 - 杨弋:《Hash在信息学竞赛中的一类应用》 ### Splay 2004 - 杨思雨:《伸展树的基本操作与应用》 ## 图论 ### 图论 2005 - 任恺:《图论的基本思想及方法》 ### 模型建立 2004 - 黄源河:《浅谈图论模型的建立与应用》 2004 - 肖天:《“分层图思想”及其在信息学竞赛中的应用》 ### 网络流 2001 - 江鹏:《从一道题目的解法试谈网络流的构造与算法》 2002 - 金恺:《浅谈网络流算法的应用》 2007 - 胡伯涛:《最小割模型在信息学竞赛中的应用》 2007 - 王欣上:《浅谈基于分层思想的网络流算法》 2008 - 周冬《两极相通——浅析最大—最小定理在信息学竞赛中的应用》 ### 最短路 2006 - 余远铭:《最短路算法及其应用》 2008 - 吕子鉷《浅谈最短径路问题中的分层思想》 2009 - 姜碧野《SPFA算法的优化及应用》 ### 欧拉路 2007 - 仇荣琦:《欧拉回路性质与应用探究》 ### 差分约束系统 2006 - 冯威:《数与图的完美结合——浅析差分约束系统》 ### 平面图 2003 - 刘才良:《平面图在信息学中的应用》 2007 - 古楠:《平面嵌入》 ### 2-SAT 2003 - 伍昱:《由对称性解2-SAT问题》 ### 最小生成树 2004 - 吴景岳:《最小生成树算法及其应用》 2004 - 汪汀:《最小生成树问题的拓展》 ### 二分图 2005 - 王俊:《浅析二分图匹配在信息学竞赛中的应用》 ### Voronoi图 2006 - 王栋:《浅析平面Voronoi图的构造及应用》 ### 偶图 2002 - 孙方成:《偶图的算法及应用》 ## 树 ### 树 2002 - 周文超:《树结构在程序设计中的运用》 2005 - 栗师:《树的乐园——一些与树有关的题目》 ### 路径问题 2009 - 漆子超《分治算法在树的路径问题中的应用》 ### 最近公共祖先 2007 - 郭华阳:《RMQ与LCA问题》 ### 划分问题 2004 - 贝小辉:《浅析树的划分问题》 ## 数论 ### 欧几里得算法 2009 - 金斌《欧几里得算法的应用》 ### 同余方程 2003 - 姜尚仆:《模线性方程的应用——用数论方法解决整数问题》 ## 搜索 ### 搜索 2001 - 骆骥:《由“汽车问题”浅谈深度搜索的一个方面——搜索对象与策略的重要性》 2002 - 王知昆:《搜索顺序的选择》 2005 - 汪汀:《参数搜索的应用》 ### 启发式 2009 - 周而进《浅谈估价函数在信息学竞赛中的应用》 ### 优化 2003 - 金恺:《探寻深度优先搜索中的优化技巧——从正方形剖分问题谈起》 2003 - 刘一鸣:《一类搜索的优化思想——数据有序化》 2006 - 黄晓愉:《深度优先搜索问题的优化技巧》 ## 背包问题 2009 - 徐持衡《浅谈几类背包题》 ## 匹配 2004 - 楼天城:《匹配算法在搜索问题中的巧用》 ## 概率 ### 概率 2009 - 梅诗珂《信息学竞赛中概率问题求解初探》 ### 数学期望 2009 - 汤可因《浅析竞赛中一类数学期望问题的解决方法》 ## 字符串 ### 字符串 2003 - 周源:《浅析“最小表示法”思想在字符串循环同构问题中的应用》 ### 多串匹配 2004 - 朱泽园:《多串匹配算法及其启示》 2006 - 王赟:《Trie图的构建、活用与改进》 2009 - 董华星《浅析字母树在信息学竞赛中的应用》 ### 后缀数组 2004 - 许智磊:《后缀数组》 2009 - 罗穗骞《后缀数组——处理字符串的有力工具》 ### 字符串匹配 2003 - 饶向荣:《病毒的DNA———剖析一道字符匹配问题解析过程》 2003 - 林希德:《求最大重复子串》 ## 动态规划 ### 动态规划 2001 - 俞玮:《基本动态规划问题的扩展》 2006 - 黄劲松:《贪婪的动态规划》 2009 - 徐源盛《对一类动态规划问题的研究》 ### 状态压缩 2008 - 陈丹琦《基于连通性状态压缩的动态规划问题》 ### 状态设计 2008 - 刘弈《浅谈信息学中状态的合理设计与应用》 ### 树形DP 2007 - 陈瑜希:《多角度思考创造性思维——运用树型动态规划解题的思路和方法探析》 ### 优化 2001 - 毛子青:《动态规划算法的优化技巧》 2003 - 项荣璟:《充分利用问题性质——例析动态规划的“个性化”优化》 2004 - 朱晨光:《优化,再优化!——从《鹰蛋》一题浅析对动态规划算法的优化》 2007 - 杨哲:《凸完全单调性的加强与应用》 ## 计算几何 ### 立体几何 2003 - 陆可昱:《长方体体积并》 2008 - 高亦陶《从立体几何问题看降低编程复杂度》 ### 计算几何思想 2004 - 金恺:《极限法——解决几何最优化问题的捷径》 2008 - 程芃祺《计算几何中的二分思想》 2008 - 顾研《浅谈随机化思想在几何问题中的应用》 ### 圆 2007 - 高逸涵:《与圆有关的离散化》 ### 半平面交 2002 - 李澎煦:《半平面交的算法及其应用》 2006 - 朱泽园:《半平面交的新算法及其实用价值》 ## 矩阵 ### 矩阵 2008 - 俞华程《矩阵乘法在信息学中的应用》 ### 高斯消元 2002 - 何江舟:《用高斯消元法解线性方程组》 ## 数学方法 ### 数学思想 2002 - 何林:《猜想及其应用》 2003 - 邵烜程:《数学思想助你一臂之力》 ### 数学归纳法 2009 - 张昆玮《数学归纳法与解题之道》 ### 多项式 2002 - 张家琳:《多项式乘法》 ### 数形结合 2004 - 周源:《浅谈数形结合思想在信息学竞赛中的应用》 ### 黄金分割 2005 - 杨思雨:《美,无处不在——浅谈“黄金分割”和信息学的联系》 ## 其他算法 ### 遗传算法 2002 - 张宁:《遗传算法的特点及其应用》 2005 - 钱自强:《关于遗传算法应用的分析与研究》 ### 信息论 2003 - 侯启明:《信息论在信息学竞赛中的简单应用》 ### 染色与构造 2002 - 杨旻旻:《构造法——解题的最短路径》 2003 - 方奇:《染色法和构造法在棋盘上的应用》 ## 一类问题 ### 区间 2008 - 周小博《浅谈信息学竞赛中的区间问题》 ### 序 2005 - 龙凡:《序的应用》 ### 系 2006 - 汪晔:《信息学中的参考系与坐标系》 ### 物理问题 2008 - 方戈《浅析信息学竞赛中一类与物理有关的问题》 ### 编码与译码 2008 - 周梦宇《码之道—浅谈信息学竞赛中的编码与译码问题》 ### 对策问题 2002 - 骆骥:《浅析解“对策问题”的两种思路》 ## 优化 ### 算法优化 2002 - 孙林春:《让我们做得更好——从解法谈程序优化》 2004 - 胡伟栋:《减少冗余与算法优化》 2005 - 杨弋:《从的解法谈算法的优化》 2006 - 贾由:《由图论算法浅析算法优化》 ### 程序优化 2006 - 周以苏:《论反汇编在时间常数优化中的应用》 2009 - 骆可强《论程序底层优化的一些方法与技巧》 ### 语言 C++ 2004 - 韩文弢:《论C++语言在信息学竞赛中的应用》 ## 策略 ### 策略 2004 - 李锐喆:《细节——不可忽视的要素》 2005 - 朱泽园:《回到起点——一种突破性思维》 2006 - 陈启峰:《“约制、放宽”方法在解题中的应用》 2006 - 李天翼:《从特殊情况考虑》 2007 - 陈雪:《问题中的变与不变》 2008 - 肖汉骏《例谈信息学竞赛分析中的“深”与“广”》 ### 倍增 2005 - 朱晨光:《浅析倍增思想在信息学竞赛中的应用》 ### 二分 2002 - 李睿:《二分法与统计问题》 2002 - 许智磊:《二分,再二分!——从Mobiles(IOI2001)一题看多重二分》 2005 - 杨俊:《二分策略在信息学竞赛中的应用》 ### 调整 2006 - 唐文斌:《“调整”思想在信息学中的应用》 ### 随机化 2007 - 刘家骅:《浅谈随机化在信息学竞赛中的应用》 ### 非完美算法 2005 - 胡伟栋:《浅析非完美算法在信息学竞赛中的应用》 2008 - 任一恒《非完美算法初探》 ### 提交答案题 2003 - 雷环中:《结果提交类问题》 ### 守恒思想 2004 - 何林:《信息学中守恒法的应用》 ### 极限法 2003 - 王知昆:《浅谈用极大化思想解决最大子矩形问题》 ### 贪心 2008 - 高逸涵《部分贪心思想在信息学竞赛中的应用》 ### 压缩法 2005 - 周源:《压去冗余缩得精华——浅谈信息学竞赛中的“压缩法”》 ### 逆向思维 2005 - 唐文斌:《正难则反——浅谈逆向思维在解题中的应用》 ### 穷举 2004 - 鬲融:《浅谈特殊穷举思想的应用》 ### 目标转换 2002 - 戴德承:《退一步海阔天空——“目标转化思想”的若干应用》 2004 - 栗师:《转化目标在解题中的应用》 ### 类比 2006 - 周戈林:《浅谈类比思想》 ### 分割与合并 2006 - 俞鑫:《棋盘中的棋盘——浅谈棋盘的分割思想》 2007 - 杨沐:《浅析信息学中的“分”与“合”》 ### 平衡思想 2008 - 郑暾《平衡规划——浅析一类平衡思想的应用》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值