多项式牛顿迭代

以前以为可以不写,现在发现不得不写

数域的变化

重要的问题:什么是 x ? x? x?
如果我们的数域是实数,那么 x x x是一个自变量,我们可以求 d x d f ( x ) \frac { {\rm d }x}{ {\rm d}f(x)} df(x)dx,可以在 x = C x = C x=C处泰勒展开,可以牛顿迭代求出 x x x的值。
但是我们现在的数域是形式幂级数, x x x的地位,和实数域中的 1 1 1一样,是一个常数。
d x d f ( x ) ? \frac { {\rm d }x}{ {\rm d}f(x)}? df(x)dx?
显然对于常数 x x x,它等于 x x x
任意一个固定的多项式 P ( x ) P(x) P(x)都是常数。
那么我们的数域是形式幂级数,我们假设一个变多项式 F ( x ) F(x) F(x),那么 F ( x ) F(x) F(x)是一个自变量,我们可以求 d G ( F ( x ) ) d F ( x ) \frac { {\rm d }G(F(x))}{ {\rm d}F(x)} dF(x)dG(F(x))
也就是说 F ( x ) F(x) F(x)代替了 x x x的作用,
而且,
x x x的作用变的和 1 1 1一样了。
这段话的作用是警示读者,对于后文的所有内容,
任意一个固定的多项式 P ( x ) P(x) P(x)都是常数,不要认为 x x x是变量, x x x求导出来就是 x x x

泰勒展开

考虑一个多项式函数 G ( F ( x ) ) G(F(x)) G(F(x)),他的值随着自变量 F ( x ) F(x) F(x)的改变而改变。
F ( x ) = F 0 ( x ) F(x) = F_0(x) F(x)=F0(x)处展开即为:
∑ i = 0 G ( i ) ( F 0 ( x ) ) i ! ( F ( x ) − F 0 ( x ) ) i \sum_{i=0} \frac {G^{(i)}(F_0(x))}{i!}(F(x)-F_0(x))^i i=0i!G(i)(F0(x))(F(x)F0(x))i

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值