Number HYSBZ - 3275

68 篇文章 0 订阅
23 篇文章 0 订阅

有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1

Input
第一行一个正整数n,表示数的个数。n<=3000
第二行n个正整数a1,a2,...an
Output

最大的和

Sample Input 53 4 5 6 7
Sample Output 22

二分图最小割模型中,

考虑这样一个图


求它的最小割。

对于A-C-E-F来说,

A-C,C-E,E-F中至少要割一条边,

如果让C-E的流量为inf

那么C-E就不可能被割,

所以就是A-C,E-F中至少割一条

即是:A-C,E-F不可共存!

那么我们再来看这个题。

两个数不可以同时选。

就相当于两条边你至少割一条,

割边的流量即是你失去的流量,要失去的流量最小,保留下的最大,只需求最小割。

然而这个图是二分图吗?

显然是,奇偶的二分图

ACcode:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define sqr(a) a*a
#define maxn 3005
#define maxm 1500*1500*2
#define inf 0x3f3f3f3f
#define LL long long
using namespace std;

int n,a[maxn];
int info[maxn],to[maxm],Prev[maxm],cap[maxm],cnt_e=1;
inline void Node(int u,int v,int c)
{
	Prev[++cnt_e]=info[u],info[u]=cnt_e,to[cnt_e]=v;
	cap[cnt_e]=c;
}
inline void Line(int u,int v,int c)
{
	Node(u,v,c),Node(v,u,0);
}

int S,T,tmp,flag,stm,vd[maxn],d[maxn];

int aug(int now,int Max)
{
	if(now==T)
		return Max;
	int inc,st=Max,Min=S;
	for(int i=info[now];i && st && !flag;i=Prev[i])
		if(cap[i])
		{
			if(d[to[i]]+1==d[now])
			{
				inc=aug(to[i],min(st,cap[i]));
				st-=inc,cap[i]-=inc,cap[i^1]+=inc;
			}
			Min=min(Min,d[to[i]]);
		}
	if(Max==st)
	{
		!(--vd[d[now]]) && (flag=1);
		vd[d[now]=Min+1]++;
	}
	return Max-st;
}

int sap()
{
	memset(d,0,sizeof d);
	memset(vd,0,sizeof vd);
	vd[0]=T;
	for(stm=flag=0;!flag;) stm+=aug(S,inf);
	return stm;
}

int gcd(int a,int b)
{
	return !b?a:gcd(b,a%b);
}

int main()
{
	int sum=0;
	scanf("%d",&n);	
	S=n+1,T=n+2;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		if(a[i]&1) Line(S,i,a[i]);
		else Line(i,T,a[i]);
		sum+=a[i];
	}
	
	for(int i=1;i<=n;i++) if(a[i]&1)
		for(int j=1;j<=n;j++) if(!(a[j]&1))
			if(gcd(a[i],a[j])==1 && abs(sqr(floor(sqrt(1.0*a[i]*a[i]+1.0*a[j]*a[j])))-1.0*a[i]*a[i]-1.0*a[j]*a[j])<=1e-5)
				Line(i,j,inf);
	
	printf("%d\n",sum-sap());
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值