拉格朗日插值法

105 篇文章 0 订阅

发一个大佬链接
就是一个构造的式子。
我们可以:
O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n)用多项式NTT算法做到这个 O ( n 2 ) O(n^2) O(n2)的算法?
常数的幽怨。

但是还可以以超短的长度 O ( n 2 ) O(n^2) O(n2)求出多项式系数。

vector<int>interpolation(vector<int>a,int n){// only when x_i = i , 0 <= i <= n
	vector<int>s(n+1),r(n+1);
	r[0]=a[0],s[0]=1;
	for(int i=1;i<=n;i++){
		for(int j=n;j>=i;j--) a[j]=1ll*(a[j]-a[j-1])*inv[i]%mod;
		for(int j=i;j>=0;j--)
			s[j] = ((j?s[j-1]:0) - (i-1ll) * s[j]) % mod,
			r[j] = (r[j] + s[j] * 1ll * a[i]) % mod;
	}
	return r;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值