发一个大佬链接
就是一个构造的式子。
我们可以:
O
(
n
log
2
n
)
O(n\log^2n)
O(nlog2n)用多项式NTT算法做到这个
O
(
n
2
)
O(n^2)
O(n2)的算法?
常数的幽怨。
但是还可以以超短的长度 O ( n 2 ) O(n^2) O(n2)求出多项式系数。
vector<int>interpolation(vector<int>a,int n){// only when x_i = i , 0 <= i <= n
vector<int>s(n+1),r(n+1);
r[0]=a[0],s[0]=1;
for(int i=1;i<=n;i++){
for(int j=n;j>=i;j--) a[j]=1ll*(a[j]-a[j-1])*inv[i]%mod;
for(int j=i;j>=0;j--)
s[j] = ((j?s[j-1]:0) - (i-1ll) * s[j]) % mod,
r[j] = (r[j] + s[j] * 1ll * a[i]) % mod;
}
return r;
}