51nod 1843 排列合并机(组合DP)

这篇博客探讨了一个关于合并排列的问题,其中涉及到一种特殊的动态规划方法来解决期望值的计算。通过定义状态和递推公式,作者揭示了如何处理排列合并过程中可能出现的重复情况,并提出了一个AC代码作为解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小C有一个合并排列机,它可以合并两个长度为n的排列A,B。
合并一共有2*n步,一开始答案的数列为空,每一步有两个选项:
(1).若A不为空,则你可以删掉A开头的元素,放到答案数列的末尾。
(2).若B不为空,则你可以删掉B开头的元素,放到答案数列的末尾。
以上两个选项每一步只能选一个
小C不喜欢重复的东西,定义两个排列的价值 f ( A , B ) f(A,B) f(A,B)为他们合并可以生成的答案数列的种数
两个答案数列不同当且仅当某一位不同
现在小C想知道,随机选择两个长度为n的排列A,B。求 f ( A , B ) f(A,B) f(A,B)期望
为了避免精度误差,你需要输出 a n s ∗ n ! n ! ans*n!n! ansn!n!对p取模的值,显然这是个整数。

这个题有3条坑。
1:对于确定的A,B,有多少种操作序列并不代表有多少种答案数列,有重复。
发现重复只会出现在答案数列中有一段,满足条件C:
所有出现过的数字都有两份,并且可以分成两个没有重复数字的排列。
那么这两个排列对于AB的归属可以互换。
对于确定的排列A,B,我们设 f i , j f_{i,j} fi,j表示已经处理完 A 的 前 i 个 和 B 的 前 j 个 A的前i个和B的前j个 AiBj数后不同的答案数列数:
f i , j = f i − 1 , j + f i , j − 1 − ∑ d = 1 g ( i − d + 1 , i , j − d + 1 , j ) ∗ f i − d , j − d f_{i,j} = f_{i-1,j} + f_{i,j-1} - \sum_{d=1} g(i-d+1,i,j-d+1,j) * f_{i-d,j-d} fi,j=fi1,j+fi,j1d=1g(id+1,i,jd+1,j)fid,jd
其中 g ( a , b , c , d ) g(a,b,c,d) g(a,b,c,d)表示由 A a − b A_{a-b} Aab B c − d B_{c-d} Bcd中的字符按序可以组成多少个满足条件 C C C的数列。
这样可以把重复的全部剪掉。
2:发现答案并不是这样的,如果一个数列满足条件 C C C但是它的一个前缀也满足,那么去重的过程会多去重,去重过头了,那么 g ( a , b , c , d ) g(a,b,c,d) g(a,b,c,d)表示由 A a − b A_{a-b} Aab B c − d B_{c-d} Bcd中的字符按序可以组成多少个满足条件 C C C并且前缀都不满足条件 C C C的数列。(但是我们并不需要考虑如何算这个 g g g
3:考虑对于不确定的 A , B A,B A,B,我们如何设计状态使得我们仍然可以得到 g g g数组。
现在的 g g g g ( d ) g(d) g(d)表示长度为 d d d的满足条件 C C C并且前缀不满足条件 C C C的数列的数量,
这个可以 O ( n 2 ) O(n^2) O(n2)递推。
但是我们现在需要知道 A , B A,B A,B中有多少对相等的数。
f i , j , k f_{i,j,k} fi,j,k表示已经处理完 A 的 前 i 个 和 B 的 前 j 个 A的前i个和B的前j个 AiBj数,有 k k k对相等的数。
这样就可以DP了,注意到我们要注意到 f i , j , k f_{i,j,k} fi,j,k是在已经确定了 n n n种数字中 i + j − k i+j-k i+jk种数字的意义下计算的,这样才能转移。

AC Code:

#include<bits/stdc++.h>
#define maxn 205
#define LL long long
using namespace std;

int mod;
int n,fac[maxn]={1,1},inv[maxn]={1,1},invf[maxn]={1,1};
int f[maxn][maxn][maxn],g[maxn][maxn],G[maxn];
int A(int a,int b){
	if(a < 0 || b < 0 || a < b) return 0;
	return fac[a] * 1ll * invf[a-b]  %mod;
}

void add(int &a,LL b){
	a = (1ll * a + b) % mod;
}

int main(){
	
	freopen("R.in","r",stdin);
	freopen("R.out","w",stdout);
	
	scanf("%d%d",&n,&mod);
	for(int i=2;i<=n;i++) 
		fac[i] = 1ll * fac[i-1] * i % mod,
		inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod,
		invf[i] = 1ll * invf[i-1] * inv[i] % mod;
	g[0][0] = 1;
	for(int i=1;i<=2*n;i++){
		for(int j=(i/2)+1;j<=i;j++)
			g[i][j] = (g[i-1][j-1] + g[i-1][j]) % mod;
		if(i % 2 == 0) G[i/2] = (g[i-1][i/2] + g[i-1][i/2-1]) % mod;
	}
	f[0][0][0] = 1;
	for(int i=0;i<=n;i++)
		for(int j=0;j<=n;j++)
			for(int k=0;k<=min(i,j);k++)
				if(i || j){
					if(i) add(f[i][j][k] , 1ll * f[i-1][j][k] * (n-(i-1+j-k)) % mod);
					if(j) add(f[i][j][k] , 1ll * f[i][j-1][k] * (n-(i+j-1-k)) % mod);
					if(j && k) add(f[i][j][k] , 1ll * f[i][j-1][k-1] * (i-k+1) % mod);
					if(i && k) add(f[i][j][k] , 1ll * f[i-1][j][k-1] * (j-k+1) % mod);
					for(int p=1;p<=k;p++)
						add(f[i][j][k] , - 1ll * A(n-(i-p+j-k),p) * G[p] % mod * f[i-p][j-p][k-p] % mod);
				}
	printf("%d\n",(f[n][n][n]+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值