二分搜索树

二叉树

在这里插入图片描述

class Node {
    E e;
    Node left;
    Node right;
}
  • 二叉树具有唯一的根节点
  • 二叉树每个节点最多有两个孩子,左孩子、右孩子
  • 二叉树每个结点只有一个父结点
  • 二叉树具有天然的递归性,每个节点与其子孙节点都可看成一棵树
  • 空也是二叉树

二分搜索树

  • 二分搜索树是二叉树

  • 二分搜索树的每个节点的值:

    • 大于其左子树的所有节点的值

    • 小于其右子树的所有节点的值

  • 每一颗子树也是二分搜索树

  • 存储的元素必须有可比较性
    在这里插入图片描述
    代码实现

public class BST<E extends Comparable<E>> {

    private class Node {
        public E e;
        public Node left, right;

        public Node(E e) {
            this.e = e;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int size;

    public BST(){
        root = null;
        size = 0;
    }
	// 返回节点数
    public int size(){
        return size;
    }
	// 返回是否为空
    public boolean isEmpty(){
        return size == 0;
    } 
}

向二分搜索树添加元素

  • 可以递归实现
  • 也可非递归实现
//向二分搜索树添加新元素e --- 递归实现
public void add(E e){
    if (root == null) {
        root = new Node(e);
        size++;
    }
    else
        add(root, e);
}
// 向以node为根节点的二分搜索树中插入元素e --- 递归实现
private void add(Node node, E e){
    if(e.equals(node.e))
        return;
    else if(e.compareTo(node.e) < 0 && node.left == null){
        node.left = new Node(e);
        size++;
        return;
    }
    else if(e.compareTo(node.e) > 0 && node.right == null){
        node.right = new Node(e);
        size++;
        return;
    }
    else if(e.compareTo(node.e) < 0 )
        add(node.left, e);
    else
        add(node.right, e);
}

上述插入算法的改进

由于null本身也可以看做一颗二分搜索树,可以把向null这颗二分搜索树插入新元素看做最基本的问题。

转化为更小问题: 向左子树或右子树插入新元素。

// 向二分搜索树添加新元素e
public void add(E e){
    root = add(root, e);
}
// 向以node为根节点的二分搜索树中插入元素e --- 递归实现
// 返回插入新节点后的二分搜索树的根
private Node add(Node node, E e)
{
    if(node == null){
		size++;
        return new Node(e);
    }
    if(e.compareTo(node.e) < 0)
        node.left = add(node.left, e);
    else if(e.compareTo(node.e) > 0)
        node.right = add(node.right, e);
    return  node;
}

判断二分搜索树是否包含元素

// 返回二分搜索树是否包含元素e
public boolean contains(E e){
    return contains(root, e);
}
// 返回以node为根的二分搜索树是否包含元素e --- 递归实现
private boolean contains(Node node, E e){
    if (node == null)
        return false;
    if (e.compareTo(node.e) == 0)
        return true;
    else if (e.compareTo(node.e) < 0)
        return contains(node.left, e);
    else
        return contains(node.right, e);
}

遍历操作

  • 遍历操作是把所有的结点访问一遍

前序遍历

// 二分搜索树的前序遍历
public void preOrder(){
    preOrder(root);
}
// 前序遍历以node为根的二分搜索树 --- 递归算法
private void preOrder(Node node){
    if(node == null)
        return;
    System.out.println(node.e);
    preOrder(node.left);
    preOrder(node.right);
}

打印二叉树

@Override
public String toString(){
    StringBuilder res = new StringBuilder();
    generateBSTString(root, 0, res);
    return res.toString();
}
// 生成以node为根节点,深度为depth为描述的二叉树字符串
private void generateBSTString(Node node, int depth, StringBuilder res){
    if (node == null){
        res.append(generateDepthString(depth) + "null\n");
        return;
    }
    res.append(generateDepthString(depth) + node.e + "\n");
    generateBSTString(node.left, depth+1, res);
    generateBSTString(node.right, depth+1, res);
}
private String generateDepthString(int depth){
    StringBuilder res = new StringBuilder();
    for(int i=0; i<depth; i++)
        res.append("--");
    return res.toString();
}

中序遍历

// 二分搜索树的中序遍历
public void inOrder(){
    inOrder(root);
}
// 中序遍历以node为根的二分搜索树 --- 递归算法
private void inOrder(Node node){
    if(node == null)
        return;
    inOrder(node.left);
    System.out.println(node.e);
    inOrder(node.right);
}

后序遍历

// 二分搜索树的后序遍历
public void postOrder(){
    postOrder(root);
}
// 中序遍历以node为根的二分搜索树 --- 递归算法
private void postOrder(Node node){
    if(node == null)
        return;
    postOrder(node.left);
    postOrder(node.right);
    System.out.println(node.e);
}

二分搜索树的非递归前序遍历

  • 借助栈的数据结构来实现前序遍历
public void preOrderNR(){
    Stack<Node> stack = new Stack<>();
    stack.push(root);
    while(!stack.isEmpty()){
        Node cur = stack.pop();
        System.out.println(cur.e);

        if(cur.right != null)
            stack.push(cur.right);
        if(cur.left != null)
            stack.push(cur.left);
    }
}

二分搜索树的层序遍历

  • 利用队列实现二叉树的层序遍历
// 二分搜索树层序遍历
public void levelOrder(){
    Queue<Node> q = new LinkedList<>();
    q.add(root);
    while(!q.isEmpty()){
        Node cur = q.remove();
        System.out.println(cur.e);

        if(cur.left != null)
            q.add(cur.left);
        if(cur.right != null)
            q.add(cur.right);
    }
}

删除操作

删除二分搜索树的最小值和最大值

  1. 递归查找二分搜索树最小值
// 寻找二分搜索树的最小元素
public E minimum(){
    if(size == 0)
        throw new IllegalArgumentException("BST is empty!");
    return minimum(root).e;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
    if (node.left == null)
        return node;
    return minimum(node.left);
}
  1. 递归查找二分搜索树最大值
// 寻找二分搜索树的最大元素
public E maximum(){
    if(size == 0)
        throw new IllegalArgumentException("BST is empty!");
    return maximum(root).e;
}
// 返回以node为根的二分搜索树的最大值所在的节点
private Node maximum(Node node){
    if (node.right == null)
        return node;
    return maximum(node.right);
}
  1. 二分搜索树删除最小值的节点
// 删除二分搜索树中的最小值所在的节点,返回最小值
public E removeMin(){
    E ret = minimum();
    removeMin(root);
    return ret;
}
// 删除以node为根节点的二分搜索树中的最小节点
// 返回删除节点后新的二分搜索树的根
private Node removeMin(Node node){
    if(node.left == null){
        Node rightNode = node.right;
        node.right = null;
        size--;
        return rightNode;
    }
    node.left = removeMin(node.left);
    return node;
}
  1. 二分搜索树删除最大值的节点

    // 删除二分搜索树中的最大值所在的节点,返回最大值
    public E removeMax(){
        E ret = maximum();
        removeMax(root);
        return ret;
    }
    // 删除以node为根节点的二分搜索树中的最大节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMax(Node node){
        if(node.right == null){
            Node leftNode = node.left;
            node.left = null;
            size--;
            return leftNode;
        }
        node.left = removeMax(node.left);
        return node;
    }
    

    二分搜索树删除节点
    在这里插入图片描述

  • 删除左右都有孩子的节点 d
  • 找到 s = min(d->right)
  • s 是 d 的后继
  • s->right = delMin(d->right)
  • s->left = d->left
  • 删除d, s是新的子树的根
    在这里插入图片描述
// 从二分搜索树中删除元素为e的节点
public void remove(E e){
    root = remove(root, e);
}
// 删除以node为根的二分搜索树中值为e的节点 --- 递归算法
// 返回删除节点后新的二分搜索树
private Node remove(Node node, E e){
    if(node == null)
        return null;
    if(e.compareTo(node.e) < 0){
        node.left = remove(node.left, e);
        return node;
    }
    else if(e.compareTo(node.e) > 0){
        node.right = remove(node.right, e);
        return node;
    }
    else{
        // 待删除的节点左子树为空
        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size--;
            return rightNode;
        }
        // 待删除的节点右子树为空
        if(node.right == null){
            Node leftNode = node.left;
            node.left = null;
            size--;
            return leftNode;
        }
        // 待删除的节点左右子树均不为空
        // 找到比待删除节点大的最小的节点,即待删除节点右子树的最小节点
        // 用这个节点顶替待删除节点的位置
        Node successor = minimum(node.right);
        successor.right = removeMin(node.right); // removeMin已经size--
        successor.left = node.left;
        node.left = node.right = null;
        return successor;
    }
}

二分搜索树性质

  • 二分搜索树的顺序性 ==> minimun,maximum successor,predecessor
  • 寻找foor,ceil
    在这里插入图片描述
  • rank, select ==> 元素在二分搜索树的排名,排名为?在二分搜索树中是?

重复元素的二分搜索树

  • 方法1
    在这里插入图片描述

  • 方法2
    在这里插入图片描述
    注: 该笔记为慕课网的课程笔记,若侵权立删。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值