二叉树
class Node {
E e;
Node left;
Node right;
}
- 二叉树具有唯一的根节点
- 二叉树每个节点最多有两个孩子,左孩子、右孩子
- 二叉树每个结点只有一个父结点
- 二叉树具有天然的递归性,每个节点与其子孙节点都可看成一棵树
- 空也是二叉树
二分搜索树
-
二分搜索树是二叉树
-
二分搜索树的每个节点的值:
-
大于其左子树的所有节点的值
-
小于其右子树的所有节点的值
-
-
每一颗子树也是二分搜索树
-
存储的元素必须有可比较性
代码实现
public class BST<E extends Comparable<E>> {
private class Node {
public E e;
public Node left, right;
public Node(E e) {
this.e = e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BST(){
root = null;
size = 0;
}
// 返回节点数
public int size(){
return size;
}
// 返回是否为空
public boolean isEmpty(){
return size == 0;
}
}
向二分搜索树添加元素
- 可以递归实现
- 也可非递归实现
//向二分搜索树添加新元素e --- 递归实现
public void add(E e){
if (root == null) {
root = new Node(e);
size++;
}
else
add(root, e);
}
// 向以node为根节点的二分搜索树中插入元素e --- 递归实现
private void add(Node node, E e){
if(e.equals(node.e))
return;
else if(e.compareTo(node.e) < 0 && node.left == null){
node.left = new Node(e);
size++;
return;
}
else if(e.compareTo(node.e) > 0 && node.right == null){
node.right = new Node(e);
size++;
return;
}
else if(e.compareTo(node.e) < 0 )
add(node.left, e);
else
add(node.right, e);
}
上述插入算法的改进
由于null本身也可以看做一颗二分搜索树,可以把向null这颗二分搜索树插入新元素看做最基本的问题。
转化为更小问题: 向左子树或右子树插入新元素。
// 向二分搜索树添加新元素e
public void add(E e){
root = add(root, e);
}
// 向以node为根节点的二分搜索树中插入元素e --- 递归实现
// 返回插入新节点后的二分搜索树的根
private Node add(Node node, E e)
{
if(node == null){
size++;
return new Node(e);
}
if(e.compareTo(node.e) < 0)
node.left = add(node.left, e);
else if(e.compareTo(node.e) > 0)
node.right = add(node.right, e);
return node;
}
判断二分搜索树是否包含元素
// 返回二分搜索树是否包含元素e
public boolean contains(E e){
return contains(root, e);
}
// 返回以node为根的二分搜索树是否包含元素e --- 递归实现
private boolean contains(Node node, E e){
if (node == null)
return false;
if (e.compareTo(node.e) == 0)
return true;
else if (e.compareTo(node.e) < 0)
return contains(node.left, e);
else
return contains(node.right, e);
}
遍历操作
- 遍历操作是把所有的结点访问一遍
前序遍历
// 二分搜索树的前序遍历
public void preOrder(){
preOrder(root);
}
// 前序遍历以node为根的二分搜索树 --- 递归算法
private void preOrder(Node node){
if(node == null)
return;
System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}
打印二叉树
@Override
public String toString(){
StringBuilder res = new StringBuilder();
generateBSTString(root, 0, res);
return res.toString();
}
// 生成以node为根节点,深度为depth为描述的二叉树字符串
private void generateBSTString(Node node, int depth, StringBuilder res){
if (node == null){
res.append(generateDepthString(depth) + "null\n");
return;
}
res.append(generateDepthString(depth) + node.e + "\n");
generateBSTString(node.left, depth+1, res);
generateBSTString(node.right, depth+1, res);
}
private String generateDepthString(int depth){
StringBuilder res = new StringBuilder();
for(int i=0; i<depth; i++)
res.append("--");
return res.toString();
}
中序遍历
// 二分搜索树的中序遍历
public void inOrder(){
inOrder(root);
}
// 中序遍历以node为根的二分搜索树 --- 递归算法
private void inOrder(Node node){
if(node == null)
return;
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}
后序遍历
// 二分搜索树的后序遍历
public void postOrder(){
postOrder(root);
}
// 中序遍历以node为根的二分搜索树 --- 递归算法
private void postOrder(Node node){
if(node == null)
return;
postOrder(node.left);
postOrder(node.right);
System.out.println(node.e);
}
二分搜索树的非递归前序遍历
- 借助栈的数据结构来实现前序遍历
public void preOrderNR(){
Stack<Node> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
Node cur = stack.pop();
System.out.println(cur.e);
if(cur.right != null)
stack.push(cur.right);
if(cur.left != null)
stack.push(cur.left);
}
}
二分搜索树的层序遍历
- 利用队列实现二叉树的层序遍历
// 二分搜索树层序遍历
public void levelOrder(){
Queue<Node> q = new LinkedList<>();
q.add(root);
while(!q.isEmpty()){
Node cur = q.remove();
System.out.println(cur.e);
if(cur.left != null)
q.add(cur.left);
if(cur.right != null)
q.add(cur.right);
}
}
删除操作
删除二分搜索树的最小值和最大值
- 递归查找二分搜索树最小值
// 寻找二分搜索树的最小元素
public E minimum(){
if(size == 0)
throw new IllegalArgumentException("BST is empty!");
return minimum(root).e;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if (node.left == null)
return node;
return minimum(node.left);
}
- 递归查找二分搜索树最大值
// 寻找二分搜索树的最大元素
public E maximum(){
if(size == 0)
throw new IllegalArgumentException("BST is empty!");
return maximum(root).e;
}
// 返回以node为根的二分搜索树的最大值所在的节点
private Node maximum(Node node){
if (node.right == null)
return node;
return maximum(node.right);
}
- 二分搜索树删除最小值的节点
// 删除二分搜索树中的最小值所在的节点,返回最小值
public E removeMin(){
E ret = minimum();
removeMin(root);
return ret;
}
// 删除以node为根节点的二分搜索树中的最小节点
// 返回删除节点后新的二分搜索树的根
private Node removeMin(Node node){
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
-
二分搜索树删除最大值的节点
// 删除二分搜索树中的最大值所在的节点,返回最大值 public E removeMax(){ E ret = maximum(); removeMax(root); return ret; } // 删除以node为根节点的二分搜索树中的最大节点 // 返回删除节点后新的二分搜索树的根 private Node removeMax(Node node){ if(node.right == null){ Node leftNode = node.left; node.left = null; size--; return leftNode; } node.left = removeMax(node.left); return node; }
二分搜索树删除节点
- 删除左右都有孩子的节点 d
- 找到 s = min(d->right)
- s 是 d 的后继
- s->right = delMin(d->right)
- s->left = d->left
- 删除d, s是新的子树的根
// 从二分搜索树中删除元素为e的节点
public void remove(E e){
root = remove(root, e);
}
// 删除以node为根的二分搜索树中值为e的节点 --- 递归算法
// 返回删除节点后新的二分搜索树
private Node remove(Node node, E e){
if(node == null)
return null;
if(e.compareTo(node.e) < 0){
node.left = remove(node.left, e);
return node;
}
else if(e.compareTo(node.e) > 0){
node.right = remove(node.right, e);
return node;
}
else{
// 待删除的节点左子树为空
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
// 待删除的节点右子树为空
if(node.right == null){
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
// 待删除的节点左右子树均不为空
// 找到比待删除节点大的最小的节点,即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = removeMin(node.right); // removeMin已经size--
successor.left = node.left;
node.left = node.right = null;
return successor;
}
}
二分搜索树性质
- 二分搜索树的顺序性 ==> minimun,maximum successor,predecessor
- 寻找foor,ceil
- rank, select ==> 元素在二分搜索树的排名,排名为?在二分搜索树中是?
重复元素的二分搜索树
-
方法1
-
方法2
注: 该笔记为慕课网的课程笔记,若侵权立删。