深度学习之PyTorch---- 多项式线性回归

本文详细介绍了如何使用PyTorch进行多项式线性回归,通过实例展示了数据预处理、模型构建、训练过程及结果评估,帮助读者深入理解深度学习在简单线性问题中的应用。
摘要由CSDN通过智能技术生成
"""
多项式回归
"""
def make_features(x):
    """Builds features a matrix with columns [x,x^2,x^3]"""
    x = x.unsqueeze(1)
    return torch.cat([x ** i for i in range(1,4)],1)


def f(x):
    """Approximated function."""
    return x.mm(W_target) + b_target[0]

def get_batch(batch_size=100):
    """Builds a batch (x , f(x)) pair"""
    random = torch.randn(batch_size)
    random = np.sort(random)
    random = torch.Tensor(random)
    x = make_features(random)
    y = f(x)
    return Variable(x) , Variable(y)

# Define model 
class poly_model(nn.Module):
    def __init__(self):
        super(poly_model,self).__init__()
        self.poly = nn.Linear(3,1)
        
    def forward(self,x):
        out = self.poly(x)
        return out
    


if __name__ == '__main__':
    epoch = 0
    W_target
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值