题目
给定一个字符串 s1,我们可以把它递归地分割成两个非空子字符串,从而将其表示为二叉树。
下图是字符串 s1 = "great" 的一种可能的表示形式。
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
在扰乱这个字符串的过程中,我们可以挑选任何一个非叶节点,然后交换它的两个子节点。
例如,如果我们挑选非叶节点 "gr" ,交换它的两个子节点,将会产生扰乱字符串 "rgeat" 。
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
我们将 "rgeat” 称作 "great" 的一个扰乱字符串。
同样地,如果我们继续将其节点 "eat" 和 "at" 进行交换,将会产生另一个新的扰乱字符串 "rgtae" 。
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
我们将 "rgtae” 称作 "great" 的一个扰乱字符串。
给出两个长度相等的字符串 s1 和 s2,判断 s2 是否是 s1 的扰乱字符串。
示例 1:
输入: s1 = "great", s2 = "rgeat"
输出: true
示例 2:
输入: s1 = "abcde", s2 = "caebd"
输出: false
思路
首先遍历切分s1,与s1对应切分s2(切分s2分为两种情况:首切和尾切,对应于题目的交换两个子节点),切分的s1与s2继续进行递归。递归终止条件s1.equals(s2) 或 s1.length()==2 && s1.charAt(0)==s2.charAt(1) && s1.charAt(1)==s2.charAt(0).
代码
class Solution {
public boolean isScramble(String s1, String s2) {
// 递归终止条件
if(s1.equals(s2)){
return true;
}
if(s1.length()==2 && s1.charAt(0)==s2.charAt(1) && s1.charAt(1)==s2.charAt(0) ){
return true;
}
// 切分s1
for(int i=1;i<s1.length();i++){
String s1_l=s1.substring(0,i);
String s1_r=s1.substring(i,s1.length());
// 与s1对应切分s2
String s2_l=s2.substring(0,i);
String s2_r=s2.substring(i,s2.length());
// 与s1对应切分s2
String s2_ll=s2.substring(0,s1.length()-i);
String s2_rr=s2.substring(s1.length()-i);
if(isSame(s1_l,s2_l) && isSame(s1_r,s2_r)){
if(isScramble(s1_l,s2_l) && isScramble(s1_r,s2_r)){
return true;
}else{
// 这种切割方式不行,继续执行外层for循环
}
}else if(isSame(s1_l,s2_rr) && isSame(s1_r,s2_ll)){
if(isScramble(s1_l,s2_rr) && isScramble(s1_r,s2_ll)){
return true;
}else{
// 这种切割方式不行,继续执行外层for循环
}
}else{
}
}
return false;
}
// 判断str1与str2是否有完全相同的字符
public static boolean isSame(String a,String b){
char[] aa=a.toCharArray();
char[] bb=b.toCharArray();
Arrays.sort(aa);
Arrays.sort(bb);
return Arrays.equals(aa,bb);
}
}