论文总结1

移动群智感知网络:将普通用户的移动设备作为基本感知单元,通过移动互联网进行有意识或者无意识的协作,实现感知任务分发与感知数据收集,完成大规模的、复杂的社会感知任务。

特点:“以人为中心”:人将参与整个感知过程,既是感知数据的“消费者”,又是感知数据的“生产者”。

缺陷:缺乏衡量数据收集质量的模型、有效的数据收集方法、合理的用户参与激励机制。

需要解决:(1)如何度量和分析数据收集质量(2)如何设计有效的数据收集方法(3)如何激励用户参与数据收集

解决方法:(1)覆盖质量度量模型与分析方法(2)基于时空相关性的协作机会感知(3)采用数据融合的协作机会传输(4)用户参与在线激励机制

(1.1)移动群智感知网络中的覆盖与人移动的机会性密切相关。

(1.2)考虑覆盖的时变因素,采用覆盖间隔时间作为度量标准。

(1.3)给合理规划网络提供了理论依据。

(2.1)协作机会感知架构:解决节能问题。

(2.2)离线节点选择机制;在线自适应采样机制。

(2.3)实验结果:机制保证了数据收集质量,降低了感知能量消耗。

(3.1)机会转发机制+数据融合---改善网络传输性能。

(3.2)采用数据融合的传染路由机制(ERF)和二分喷射等待机制(BSWF)。

(3.3)推导了相关性数据包的扩散规律,设计了新的数据转发规则。

(3.4)实验结果:机制保证了数据收集质量,降低了传输能量消耗。

(4.1)提出在线激励机制:OMZ机制和OMG机制:到达-离开间隔模型和一般间隔模型。

(4.2)六个特性:计算有效性、个人合理性、预算可行性、真实性、消费者主权性、常数竞争性。

绪论

无线移动终端设备:市场上的智能手机、平板电脑、车载感知设备等移动终端集成了越来越多的传感器,拥有越来越强大的计算、感知、存储和通信能力。

作用:不仅可以作为感知人及其周围环境的物联网“强”节点,同时可以作为其它缺乏计算、存储和通信能力的物联网“弱”节点与信息世界连接的桥梁。

新的感知模式(“以人为中心的感知”)的应用:健康医疗、环境监测、智能交通、城市管理、社交服务等诸多领域。

分类依据:感知对象的类型和规模。分类:个体感知和社群(群智)感知。

个体感知:对个人的运动模式进行监测来促进身体健康;对个人的日常交通模式进行监测来记录个人的碳排放足迹等。

社群(群智)感知:可以完成大规模的、复杂的社会感知任务。如交通拥堵状况和城市空气质量的监测应用。

社群(群智)感知的分类依据:感知方式的不同。分类:参与感知和机会感知。

参与感知:用户以主动的方式在什么时间、什么地点、使用哪种传感器来感知什么内容。

机会感知:用户在无意识状态下进行感知,不需要用户的主动操作。

对比:移动群智感知网络与传统无线传感器网络:感知节点数量更大、类型更多、范围更广,感知数据传输方式多样。

挑战:(由于人的参与)数据收集、数据质量管理、大数据处理、资源优化、隐私、安全、激励机制等问题





移动群智感知网络的组成:感知平台(位于数据中心的多个感知服务器组成)和移动用户(利用智能手机所嵌入的各种传感器、车载感知设备、可穿戴设备或其它便携式电子设备)两部分组成。

工作流程

(1)感知平台划分某个感知任务为若干个感知子任务,通过开放式呼叫的方式向一定用户发布这些任务,并采取某种激励机制吸引用户参与。

(2)用户得知感知任务后,根据自己的情况决定是否参与感知活动。

(3)参与的用户利用所需的传感器进行感知,将感知数据进行前端处理,并采用隐私保护手段将数据上报给感知平台。

(4)感知平台对所获得的所有感知数据进行处理和分析,并以此构建环境监测、智能交通、城市管理、公共安全、社交服务等各种移动群智感知应用。

(5)感知平台对用户数据进行评估,并根据所采用的激励机制对用户感知所付出的代价进行适当补偿。

基本特点:人将参与感知、传输、数据分析、应用决策等整个系统的每个过程,既是感知数据的“消费者”,也是感知数据的“生产者”。利用普适的移动感知设备完成那些仅依靠个体很难实现的大规模的、复杂的社会感知任务。

(1)网络部署成本更低(人的移动性可以促进感知覆盖和数据传输)。

(2)网络维护更容易。(3)系统更具有可扩展性。

应用领域:环境监测、智能交通、城市管理、公共安全、社交服务

研究内容

(1)移动群智感知网络共性平台

(2)移动群智感知数据的前端处理(数据质量增强、情境推断)

(3)移动群智感知数据的机会传输

(4)移动群智感知数据的分析挖掘(大数据存储与处理技术、数据质量管理技术、多模态数据挖掘技术)

(5)移动群智感知网络资源优化(合理调度不同类型的传感器完成同一感知任务,事先感知质量与资源消耗的平衡、利用不同类型感知数据的关联性,使用较少的传感器采集较少的感知数据完成多个同时进行的感知任务、利用感知数据的时空相关性,选择有效的用户集,并设置合理的感知参数,使多个用户协作完成感知任务,实现感知质量与资源消耗的平衡)

(6)移动群智感知网络激励机制(斯塔克伯格博弈、逆向拍卖)

(7)移动群智感知网络的安全和隐私(匿名化、安全多方计算、数据加扰)


感知数据收集与激励机制相关工作

数据收集:

(1)覆盖控制理论与算法:研究如何度量覆盖质量和如何部署网络满足覆盖质量需求。

(2)数据收集协议:研究如何高效地收集感知数据,满足传输延迟、节点能量和整个网络生存时间等约束条件。

无线传感器网络应用领域:事物监测、事件检测、目标跟踪(在这些应用中,无线传感器网络主要功能是通过无线传感器节点协作进行数据收集)


已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页