妈妈再也不用担心我不会解线性方程了(线性方程到底能干什么)

r = 1 − sin ⁡ ( θ ) \color{blue} r = 1-\sin(\theta) r=1sin(θ)
这个是心型线的极坐标公式,这样或许看不太清楚,但是当你在matlab中运行

theta=-pi:0.001:pi;
r=1-sin(theta);
polar(theta,r,'r');

就能够看到
在这里插入图片描述
心型线是由素有少女杀手之称的笛卡尔首创,对,就是他在这里插入图片描述
坊间流传着关于笛卡尔爱情的两个版本,一个是和公主,一个是和女王,至于到底是和谁对我们广大吃瓜群众来说倒是无所谓。不过他这个骚气的心型线倒是被现在的文艺小青年追捧得要死。
心型线是他对文艺界的突出贡献,而对数学界,笛卡尔最大的贡献就是将几何与代数结合,即笛卡尔坐标系
笛卡尔曾经说
三 维 空 间 每 一 个 点 都 与 一 个 向 量 一 一 对 应 \small\color{red}三维空间每一个点都与一个向量一一对应
你可能觉得这是一句废话,但没这句话以前搞几何的人还真不敢用 [ a , b , c ] [a,b,c] [a,b,c]这样一个三元数组来表示空间中的一个向量。
相信大部分人上初中的时候都遇到过让人痛恨无比的小车A,B,A总是有点秀,总是先走了那么七八米,但速度就是快不起来,B总是那么勤奋,从起点开始跟A商量好自己的速度是他的几倍,然后让我们求B啥时候能追上A。为了严谨我们来上题,根据匀速运动公式
s = v t s=vt s=vt
我们假设两个小车的运动路线如下,并将变量放在等式一边
{ s = t + 4 t > 0 s = 2 t t > 0 ⇒ { s − t = 4 t > 0 s − 2 t = 0 t > 0 \begin{cases} s=t+4 &t>0 \\ s=2t &t>0 \end{cases}⇒ \begin{cases} s-t=4 &t>0 \\ s-2t=0 &t>0 \end{cases} {s=t+4s=2tt>0t>0{st=4s2t=0t>0t>0
对这个方程我们有两种方法来解决

  • Row图
    在二维平面依次画出每一条线,如图在这里插入图片描述
    得到解 t = 4 且 s = 8 t=4且s=8 t=4s=8。这种通过画图看点的方式在解决线相交问题时比较简单,但是当维度上升,就会比较复杂。例如解三元方程
    { 2 x − y = 0 − x + 2 y − z = − 1 − 3 y + 4 z = 4 \begin{cases} 2x-y=0 \\ -x+2y-z=-1\\ -3y+4z=4 \end{cases} 2xy=0x+2yz=13y+4z=4
    需要在三维空间中画出三个面,此时三个面的交点变得难以观察
    在这里插入图片描述
    至于更高的维度(更多元函数),图像已经无法表示,所以我们可以使用第二种方法来解决。
  • Col图
    首先将方程转换为矩阵的
    { s − t = 4 t > 0 s − 2 t = 0 t > 0 ⇒ [ 1 − 1 1 − 2 ] [ s t ] = [ 4 0 ] \begin{cases} s-t=4 &t>0 \\ s-2t=0 &t>0 \end{cases}⇒ \begin{bmatrix} 1&-1 \\ 1&-2 \end{bmatrix} \begin{bmatrix} s\\t \end{bmatrix}= \begin{bmatrix} 4\\0 \end{bmatrix} {st=4s2t=0t>0t>0[1112][st]=[40]
    ⇒ s [ 1 1 ] + t [ − 1 − 2 ] = [ 4 0 ] ⇒s\begin{bmatrix} 1\\1 \end{bmatrix}+ t\begin{bmatrix} -1\\-2 \end{bmatrix}= \begin{bmatrix} 4\\0 \end{bmatrix} s[11]+t[12]=[40]
    根据row图中的· s = 8 , t = 2 s=8,t=2 s=8t=2我们验证如下
    在这里插入图片描述
    至于那个三元方程组,我们可将其表示为
    ⇒ x [ 2 − 1 0 ] + y [ − 1 2 − 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] ⇒x\begin{bmatrix} 2\\-1\\0 \end{bmatrix}+ y\begin{bmatrix} -1\\2\\-3 \end{bmatrix}+ z\begin{bmatrix} 0\\-1\\4 \end{bmatrix}= \begin{bmatrix} 0\\-1\\4 \end{bmatrix} x210+y123+z014=014
    表示成这种形式后我们就可以非常直观得看到解为 [ 0 , 0 , 1 ] [0,0,1] [0,0,1],实际上 x , y , z x,y,z x,y,z三个分量在三维空间中表示的向量时不共线的,所以,它们三个可以组合出三维空间的任意向量,所以对应的三元方程组必定有解。
    一般我们将这种形式的方程组抽象为 A x = b \color{lightgreen}Ax=b Ax=b 这个方程被解释为
    find the combination of the column vectors on the left side that produce the vector on the right side
    ok,以上就是关于线性方程组及其几何解释。
    最后我想说一点我对维度的看法,我们常会说“一维线二维面三维体”,有些人还会说四维是时间,至于更高维就没办法想象了,我觉得维度也可以指你观察一个物体的角度,比如观察一只猫,它的毛色,耳型,嘴型,尾长这已经有四个维度了,观察一朵花它的颜色,花期等,所以当你觉得时间之上的维度让你无法思考时,不妨想一想这些更具体的东西可能会觉得好一些吧。
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值