线性方程组什么时候无解?多个解?唯一解?

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lynn0085/article/details/79375614

线性方程组什么时候无解?多个解?有唯一解?

一。非齐次线性方程组,无解,多解,唯一解

非齐次线性方程组,就是方程组的等式右边不为0的方程组,系数加上方程等式右边的矩阵,叫做增广矩阵

【例1】求解下列线性方程组

{ 2x1+3x2+x3=2 x12x2+2x3=4 3x1+x2+3x3=6 

第一步,先列出增广矩阵,

(231|2122|4313|6)

第二步,用高斯消元法化简,化简成阶梯矩阵
先把第2行换到第1行

(122|4231|2313|6)

,第2行减第1行的2倍,第3行减第1行的3倍,得到

(122|4073|6073|6)

,第3行减第2行,得到
(122|4073|6000|0)

,化简后的方程组,等于

{ 2x1+3x2+x3=2 7x23x3=6 0x1+0x2+0x3=0 

这样,x2可以通过x3来表示,x1也可以通过x3来表示,这样x3就叫做自由变量,x3可以取任意值。所以x1,x2,x3就有无穷多个解。

可见,化简后的有效方程组个数,小于未知数个数。
有效方程组个数=2,未知数个数=3

【例2】求解下列线性方程组

(0=d)

{ x17x2+6x3=2 2x1+3x28x3=3 x1+10x214x3=6 

第一步,先列出增广矩阵,

(176|2238|311014|6)

第二步,用高斯消元法化简,化简成阶梯矩阵
第2行减去第1行*2,第3行减去第2行

(176|201720|1000|5)

导出最后一个方程:
0x1+0x2+0x3=5
这个方程是不可能成立的,所以原线性方程组无解。
这种形式的方程叫做 {0=d} 方程,其中d是非零数,这种叫做不相容方程,也是自相矛盾的方程。
{0=d} 方程是一种自相矛盾的方程,左边全是0,右边是一个非零,这是自相矛盾的,是不相容的,所以无解。
(0=d)

判断有解无解总结:
对于 Ax=b方程组
通过高斯消元法,化简,化成阶梯行方程组
1)先看看是否出现{0=d}形式的不相容方程,如果出现,无解
2)有解的情况下,再看看有效方程个数是否小于未知数个数,如果是,则有无穷多个解。如果正好相等,则有唯一解。

二。齐次线性方程组,非零解,零解

齐次线性方程组,就是方程组的等式右边全部是0的方程组,只有系数矩阵,不需要增广矩阵,所以不会出现{0=d}形式的不相容方程。所以不会出现无解的情况,只需要考虑是多个解,还是唯一解。

对于齐次线性方程组,有

对于Ax=0的齐次线性方程组,列出其系数矩阵(不需要增广矩阵),使用高斯消元法化简,化为阶梯形矩阵,化简后,判断有效方程组个数是否小于未知数个数,

三。什么是矩阵的秩(zhi`),什么是detA?

detAA
什么叫做矩阵的秩?
将矩阵用高斯消元法化简后,非零行的行数叫做行秩,非零列的列数叫做列秩。

可以将矩阵看成一个个行向量或者列向量,秩就是极大无关组中所含向量的个数。

定义:A={aij}m×nA
记做rA,或者rankA
特别规定零矩阵的秩就是零。
若A中至少有一个r阶子式不等于零,且在r< min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,
通常又将可逆矩阵称为满秩矩阵,满秩矩阵detA0
不满秩矩阵就是奇异矩阵,奇异矩阵detA=0
由行列式性质知道,矩阵A的转置AT的秩与A的秩是一样的。

四。通过矩阵的秩(zhi`)来判断线性方程组无解,有多个解,唯一解的问题

线性方程组什么时候无解,有多个解,唯一解?

1.对于非齐次线性方程组,用矩阵的秩r(A)来判断

对线性方程组进行初等变换(高斯消元法),化为最简型(阶梯形)矩阵,

考查系数矩阵r(A),增广矩阵r(A,b),以及方程组未知数个数n
如果系数矩阵的秩r(A)小于增广矩阵的秩r(A,b),r(A)<r(A,b)
如果系统矩阵的秩小于方程组未知数个数,r(A)=r(A,b)<n
如果系统矩阵的秩等于方程组未知数个数,r(A)=r(A,b)=n

2.对于齐次线性方程组,用行列式的值 detA来判断。

不存在无解的情况
判断detA,detA==0
判断detA,detA0

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试