Python 实现 OBV 指标计算:股票技术分析的利器系列(7)

本文详细介绍了如何使用Python计算OBV(On-BalanceVolume)指标,包括基于收盘价变化的VA列计算、OBV列的累计和以及MAOBV(移动平均OBV)的计算方法。通过rolling函数展示了如何动态跟踪这些指标,为股票投资者提供买卖压力分析的依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 实现 OBV 指标计算:股票技术分析的利器系列(7)


介绍

OBV 指标是“On-Balance Volume”的缩写,意为“量价平衡指标”。它是一种用于衡量买卖压力的技术分析工具,主要基于成交量的变化来预测价格趋势。OBV 指标的计算方法很简单,它将每日的成交量根据价格变动分为买入量和卖出量,然后根据这些量的正负来对当前价格走势形成判断。

OBV 指标的基本原理是,如果某一天的收盘价高于前一天的收盘价,则当天的成交量被视为买入量,反之则被视为卖出量。通过累加这些买入量和卖出量,形成一个持续增加或减少的曲线,这条曲线反映了资金流入和流出的情况。当 OBV 曲线上升时,意味着成交量在上涨,市场上存在着买盘力量;反之,当 OBV 曲线下降时,意味着成交量在下降,市场上存在着卖盘力量。

先看看官方介绍:

OBV (累积能量线)
用法
1.股价一顶比一顶高,而OBV 一顶比一顶低,暗示头部即将形成;
2.股价一底比一底低,而OBV 一底比一底高,暗示底部即将形成;
3.OBV 突破其 N 字形波动的高点次数达5 次时,为短线卖点;
4.OBV 跌破其 N 字形波动的低点次数达5 次时,为短线买点;
5.OBV 与ADVOL、PVT、WAD、ADL同属一组指标群,使用时应综合研判。

算法解释

VA:=IF(CLOSE>REF(CLOSE,1),VOL,-VOL);
OBV:SUM(IF(CLOSE=REF(CLOSE,1),0,VA),0);
MAOBV:MA(OBV,M);
  1. VA 计算

    • 这行代码首先计算了 VA(Volume Accumulation)。
    • CLOSE > REF(CLOSE, 1) 是一个条件,检查当前收盘价是否高于前一天的收盘价。
    • 如果当前收盘价高于前一天的收盘价,则 VA 为当日成交量(VOL);否则为当日成交量的负值(-VOL)。
  2. OBV 计算

    • 这行代码计算了 OBV(On-Balance Volume)。
    • IF(CLOSE=REF(CLOSE,1),0,VA) 这一部分首先判断当前收盘价是否等于前一天的收盘价,如果相等,则对应的 VA 为 0,否则为 VA 的值。
    • 然后使用 SUM 函数对这些 VA 值进行累加,得到 OBV。
  3. MAOBV 计算

    • 这行代码计算了 MAOBV(Moving Average of OBV)。
    • MA(OBV, M) 是对 OBV 列进行移动平均计算,其中 M 是移动平均窗口的大小。

代码

rolling函数介绍

rolling 函数通常与其他函数(如 meansumstd 等)一起使用,以计算滚动统计量,例如滚动均值、滚动总和等。

以下是 rolling 函数的基本语法:

DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)
  • window: 用于计算统计量的窗口大小。
  • min_periods: 每个窗口最少需要的非空观测值数量。
  • center: 确定窗口是否居中,默认为 False
  • win_type: 窗口类型,例如 Noneboxcartriang 等,默认为 None
  • on: 在数据帧中执行滚动操作的列,默认为 None,表示对整个数据帧执行操作。
  • axis: 执行滚动操作的轴,默认为 0,表示按列执行操作。
  • closed: 确定窗口的哪一端是闭合的,默认为 None

核心代码

计算 VA 列
# 计算 VA 列
df['VA'] = df['VOL'].where(df['CLOSE'] > df['CLOSE'].shift(1), -df['VOL'])

VA 列也被称为 “Volume Adjustment”(成交量调整)列。它表示在价格上涨时和价格下跌时的成交量调整值,根据收盘价与前一日收盘价的比较情况来确定是正值还是负值。因此,它可以用来衡量价格变动对成交量的影响,有助于理解买卖压力的变化

计算 OBV 列
# 计算 OBV 列
df['OBV'] = df['VA'].where(df['CLOSE'] != df['CLOSE'].shift(1), 0).cumsum()

OBV 列通常也称为"On-Balance Volume"(量价平衡指标)列。 OBV 是一种累积型的指标,用于衡量买入和卖出压力的相对强度。 OBV 列的数值根据成交量的变化以及价格走势的涨跌而增加或减少,它反映了资金流入和流出的情况。 OBV 列的变化可以帮助分析者判断价格趋势的强弱以及市场的买卖力量对比情况。

计算 MAOBV
# 计算 MAOBV
M = 30
df['MAOBV'] = df['OBV'].rolling(window=M).mean()

完整代码

import pandas as pd

import a_get_data

data = {
    'CLOSE': 填每日收盘的数据,
    'VOL': 填每日交易量的数据
}

df = pd.DataFrame(data)
# 计算 VA 列
df['VA'] = df['VOL'].where(df['CLOSE'] > df['CLOSE'].shift(1), -df['VOL'])

# 计算 OBV 列
df['OBV'] = df['VA'].where(df['CLOSE'] != df['CLOSE'].shift(1), 0).cumsum()

# 计算 MAOBV
M = 30
df['MAOBV'] = df['OBV'].rolling(window=M).mean()

# 打印结果
print(df)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盗理者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值