使用Python计算相对强弱指数(RSI)进阶

使用Python计算相对强弱指数(RSI)进阶

废话不多说,直接上主题:=======>

代码实现

以下是实现RSI计算的完整代码:

 


    # 创建一个DataFrame
    data = {
        'DATE': date_list,  # 日期
        'CLOSE': close_px_list,  # 收盘价格 
    }

    df = pd.DataFrame(data)

import pandas as pd
import numpy as np

def get_signals(df):
    # 计算每日的价格变化
    df['changeValue'] = df['CLOSE'].diff()

    # 计算涨幅和跌幅
    df['gain'] = np.where(df['changeValue'] > 0, df['changeValue'], 0)
    df['loss'] = np.where(df['changeValue'] < 0, -df['changeValue'], 0)

    # 设置RSI的时间周期
    period = 6

    # 使用指数移动平均计算平均涨幅和平均跌幅
    df['avg_gain'] = df['gain'].ewm(alpha=1 / period, min_periods=period).mean()
    df['avg_loss'] = df['loss'].ewm(alpha=1 / period, min_periods=period).mean()

    # 避免零除问题,计算RS
    df['rs'] = df['avg_gain'] / df['avg_loss']

    # 计算RSI
    df['RSI' + str(period)] = 100 - (100 / (1 + df['rs']))
    df['RSI'] = df['RSI' + str(period)]

    # 显示计算结果
    print(df[['DATE', 'CLOSE', 'RSI' + str(period)]])

代码解析

  1. 导入库
  • 使用 pandas 进行数据处理,使用 numpy 进行数值计算。
  1. 计算每日价格变化
  • df['changeValue'] = df['CLOSE'].diff() 计算收盘价的每日变化。
  1. 计算涨幅和跌幅
  • 使用 np.where 来分别计算每日的涨幅和跌幅,涨幅为正变化,跌幅为负变化的绝对值。
  1. 设置RSI的时间周期
  • 这里设置周期为6天,可以根据需要进行调整。
  1. 计算平均涨幅和平均跌幅
  • 使用指数移动平均(EMA)来计算平均涨幅和平均跌幅,以便更好地反映近期价格波动。
  1. 计算RS和RSI
  • 计算相对强弱(RS),并进一步计算RSI。
  1. 输出结果
  • 最后,打印包含日期、收盘价和RSI值的数据框。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盗理者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值