【DA】留存率-SQL实现

在这里插入图片描述

1 背景

留存率:是用户分析的核心指标之一。它也是经典的AARRR模型(海盗模型)中就有一个重要节点——留存(Acquisition)。留存率的计算也是用户分析模型的计算基础,那么如何在数据库中用SQL实现呢?在这里插入图片描述

2 什么是留存率

常见的留存率有次日留存、三日留存、7日留存、14日留存、30日留存、90日留存等等,不同产品用户行为的频率是有差别的,留存率的设定也应该视不同产品而定,有些低频的产品用周或月的颗粒度就够了。

留存率计算逻辑:

假如某日新增了100个用户,第二天登录了50个,则次日留存率为50/100=50%,第三天登录了30个,则第二日留存率为30/100=30%,以此类推,第7天登录了10个用户,则7日留存率就是10/100=10%。

以12月1日的新增用户为例

  • 如果12月2日也登录了,就算做次日留存;
  • 如果12月3日又登录了,就算做三日留存;
  • 12月6日再次登录,就算作7日留存

3 SQL实现

数据说明

计算留存率只需要2个字段:用户ID (user_id) 和 登录日期 (login_time)

  • t_user_login:表名
  • user_id: 用户id,也可用设备ID等
  • login_time:登录日期时间,例如:2020-05-25 16:03:05

实现步骤

  • 步骤一:从数据库中提取user_id和login_time, 并计算 first_day, 用于存储每个用户ID最早登录日期(最小日期);
  • 步骤二:用登录日期-最早登录日期,得到每个登录日期距离最早登录日期的时间间隔,即留存日期;
  • 步骤三:对不同留存日期的user_id进行汇总就是留存人数,除以首日登录人数,就得到了不同留存时间的留存率。

SQL实现

SELECT
	log_day '日期',
	count( user_id_day0 ) '新增数量',
	count( user_id_day1 ) / count( user_id_day0 ) '次日留存率',
	count( user_id_day2 ) / count( user_id_day0 ) '3日留存率',
	count( user_id_day7 ) / count( user_id_day0 ) '7日留存率',
	count( user_id_day30 ) / count( user_id_day0 ) '30日留存率' 
FROM
	(
	SELECT DISTINCT
		log_day,
		a.user_id_day0,
		b.user_id AS user_id_day1,
		c.user_id AS user_id_day3,
		d.user_id AS user_id_day7,
		e.user_id AS user_id_day30 
	FROM
		( SELECT DISTINCT 
				Date( login_time ) AS log_day, 
				user_id AS user_id_day0 
				FROM 
				t_user_login 
				GROUP BY user_id 
				ORDER BY log_day 
				) a
		LEFT JOIN t_user_login b ON DATEDIFF( DATE( b.login_time ), a.log_day ) = 1 
		AND a.user_id_day0 = b.user_id
		LEFT JOIN t_user_login c ON DATEDIFF( date( c.login_time ), a.log_day ) = 2 
		AND a.user_id_day0 = c.user_id
		LEFT JOIN t_user_login d ON datediff( date( d.login_time ), a.log_day ) = 6 
		AND a.user_id_day0 = d.user_id
		LEFT JOIN t_user_login e ON datediff( date( e.login_time ), a.log_day ) = 29 
		AND a.user_id_day0 = e.user_id 
	) temp 
GROUP BY
	log_day

Reference:七日留存率-SQL实现

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页