避免数字计算精度误差的方法详解

本文探讨了计算机中浮点数运算的精度问题,通过具体的例子说明了为什么简单加减法会产生非预期的精度误差,并提供了一种解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.1 + 0.2 = 0.30000000000000004
0.8 - 0.6 = 0.20000000000000007
因为计算机读懂的是二进制,而不是十进制

把 0.1 和 0.2 转换成二进制看看:
0.1 => 0.0001 1001 1001 1001…(无限循环)
0.2 => 0.0011 0011 0011 0011…(无限循环)
双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到一串 0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 因浮点数小数位的限制而截断的二进制数字

转换为十进制,就成了 0.30000000000000004

为了避免产生精度差异,我们要把需要计算的数字乘以 10 的 n 次幂,换算成计算机能够精确识别的整数,然后再除以 10 的 n 次幂

    var a = 0.1;
    var b = 0.2;
    var c = 60;
    var d = 0.01;
    var e = 60;

    function jisuan(){
        console.log( a+ b);
        console.log( c+d+e);
    }
    jisuan();
//避免数字计算精度误差   
Math.formatFloat = function(f, digit) { 
    var m = Math.pow(10, digit); 
    return parseInt(f * m, 10) / m; 
} 
console.log( Math.formatFloat(a+b, 1) );
console.log( Math.formatFloat(c+d+e, 2) );

追加[加法和乘法]  =============
function addNum(a, b) {
    var c, d, e;
    try {
        c = a.toString().split(".")[1].length;
    } catch (f) {
        c = 0;
    }
    try {
        d = b.toString().split(".")[1].length;
    } catch (f) {
        d = 0;
    }
    return e = Math.pow(10, Math.max(c, d)), (mulNum(a, e) + mulNum(b, e)) / e;
}

function mulNum(a, b) {
    var c = 0,
        d = a.toString(),
        e = b.toString();
    try {
        c += d.split(".")[1].length;
    } catch (f) {}
    try {
        c += e.split(".")[1].length;
    } catch (f) {}
    return Number(d.replace(".", "")) * Number(e.replace(".", "")) / Math.pow(10, c);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值