0.1 + 0.2 = 0.30000000000000004
0.8 - 0.6 = 0.20000000000000007
因为计算机读懂的是二进制,而不是十进制
把 0.1 和 0.2 转换成二进制看看:
0.1 => 0.0001 1001 1001 1001…(无限循环)
0.2 => 0.0011 0011 0011 0011…(无限循环)
双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到一串 0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 因浮点数小数位的限制而截断的二进制数字
转换为十进制,就成了 0.30000000000000004
为了避免产生精度差异,我们要把需要计算的数字乘以 10 的 n 次幂,换算成计算机能够精确识别的整数,然后再除以 10 的 n 次幂
var a = 0.1;
var b = 0.2;
var c = 60;
var d = 0.01;
var e = 60;
function jisuan(){
console.log( a+ b);
console.log( c+d+e);
}
jisuan();
//避免数字计算精度误差
Math.formatFloat = function(f, digit) {
var m = Math.pow(10, digit);
return parseInt(f * m, 10) / m;
}
console.log( Math.formatFloat(a+b, 1) );
console.log( Math.formatFloat(c+d+e, 2) );
追加[加法和乘法] =============
function addNum(a, b) {
var c, d, e;
try {
c = a.toString().split(".")[1].length;
} catch (f) {
c = 0;
}
try {
d = b.toString().split(".")[1].length;
} catch (f) {
d = 0;
}
return e = Math.pow(10, Math.max(c, d)), (mulNum(a, e) + mulNum(b, e)) / e;
}
function mulNum(a, b) {
var c = 0,
d = a.toString(),
e = b.toString();
try {
c += d.split(".")[1].length;
} catch (f) {}
try {
c += e.split(".")[1].length;
} catch (f) {}
return Number(d.replace(".", "")) * Number(e.replace(".", "")) / Math.pow(10, c);
}