机器学习进阶(Foundation of Machine Learning)-1

前言

最近刚刚上研究生方向是NLP,但看了很多机器学习方面的书比如西瓜书等等,总觉得不是很基础和系统,最后选择了这本教材(Foundation of Machine Learning)来啃。因为是第一次想要系统性地写一些博客,所以打算把学习笔记写在博客上。这本书才看到前三章,但是整体感觉很基础,很多推导,有些要理解起来也会比较困难,所以写成博客也方便讨论。这个系列也算是记录我自己对于这本书的思考和理解吧,后续这个系列应该会加入一些其他的关于机器学习的拓展知识。

Introduction

机器学习可以被定义为一种利用经验来进行准确预测的计算方法,因此机器学习的算法一方面需要考虑效率,一方面则需要考虑精度。对于效率的考虑除了空间时间复杂度以外,必须考虑的是样本空间的复杂性。事实上,算法效率的边界受到假设集与数据空间的影响。此处一些假设集等符号定义以及在线学习、强化学习等问题定义不提。

PAC学习框架

PAC学习框架是通过实现近似解所需的样本点个数、样本复杂性、学习算法的时间空间复杂度来定义概念集是否可学习的。即明确什么问题是可以高效学习的,什么问题难以学习、达到一定的精度需要多少样本等问题。
因此一个问题是否PAC可学习的有如下定义:在这里插入图片描述
其中 R ( h S ) R(h_S) R(hS)代表在观察到采样出的大小为 m m m的样本集 S S S后,算法给出的映射函数 h h h的错误次数,可以看到这个式子综合了精度与样本空间大小,假设映射函数空间以及映射函数的计算复杂度的大小。而映射函数 h h h的错误次数可以利用该函数在样本空间 S S S上的经验误差来估计。这里对于样本分布 D D D有样本独立性假设。

例如证明一个矩阵空间拟合问题是PAC可学习的:
即假设集是平面矩阵的集合,在二元问题上可以认为映射函数就是矩阵内的点label为1,其余为0. 如下图,若目标函数为 R R R,则 R ′ R' R的误差包括除它们交集之外的 R R R内的点以及 R ′ R' R内的点:
在这里插入图片描述
为了证明这个问题是PAC可学习的,那么就需要找到一个算法满足上述定义。设计一个算法:对于每次采样的 S S S,返回包含所有正例点的矩形:
在这里插入图片描述
假设空间中的点落在 R R R中的概率大于 ϵ \epsilon ϵ,即 P ( R ) > ϵ P(R)>\epsilon P(R)>ϵ。基于R的四条边向内扩展,能够分出四块区域,对这四块区域限制大小(即点落入的概率)小于 ϵ / 4 \epsilon/4 ϵ/4,即:
在这里插入图片描述
由于 R ′ R' R是包含在 R R R内的,它的出错情况只可能出现在点落在 R R R内但是在 R ′ R' R外的时候,同时又由于 R ′ R' R是一个矩形,因此如果 R ′ R' R的出错概率大于 ϵ \epsilon ϵ R ′ R' R至少和上述四个区域中的一个没有交集。因为如果都有交集, R R R R ′ R' R不覆盖的区域,即出错情况的概率,必然是小于 4 ∗ ϵ / 4 4*\epsilon/4 4ϵ/4的。因此:
在这里插入图片描述
其中最后一个不等式转化使用到了 1 − x < = e − x 1-x <= e^{-x} 1x<=ex不等式。因此令 m > = 4 ϵ log ⁡ 4 δ m>=\frac{4}{\epsilon}\log \frac{4}{\delta} m>=ϵ4logδ4,有 P S ∼ D m [ R ( R s ) > ϵ ] < = δ P_{S \sim D^m}[R(R_s)>\epsilon]<=\delta PSDm[R(Rs)>ϵ]<=δ,m是多项式的,因此得证。

有限假设集一致情况下的样本复杂度边界

一致情况是指算法给出的映射函数能够保证在样本集上没有错误,就像矩形例子中算法给出的是包含所有正例的矩形一样。这种情况下有定理:
在这里插入图片描述
这里的证明采用的思路是证明在误差大于 ϵ \epsilon ϵ的假设函数集合中存在一个对所有大小为 m m m S S S满足经验误差为0的假设函数概率有上界。可以看到越多的样本对于算法的估计准确率是越有的。

有限假设集不一致情况下的样本复杂度边界

在这里插入图片描述
这里的证明用到了两个推论,第二个推论比较重要:
在这里插入图片描述在这里插入图片描述
上界的证明直接用第1个推论能证到。这个上界其实是在假设集大小和样本大小之间的均衡,假设集大有助于减小经验误差,但是会对第二项有惩罚。

拓展

Agnostic PAC-learning

上述情况的映射是每个点只有一个预测值,现实生活中可能并不是这样。因此PAC学习拓展为Agnostic PAC-learning:
在这里插入图片描述

贝叶斯误差和噪声

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值