FFT模板+题目

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e7+10;
const double Pi=acos(-1.0);
struct cp{
    double x,y;
    cp (double xx=0,double yy=0){x=xx,y=yy;}
}a[maxn],b[maxn];
cp operator + (cp a,cp b){ return cp(a.x+b.x , a.y+b.y);}
cp operator - (cp a,cp b){ return cp(a.x-b.x , a.y-b.y);}
cp operator * (cp a,cp b){ return cp(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);}

int n,m,r[maxn];
void FFT(cp *A,int type, int n){
    for(int i = 0;i < n; i++)
        if(i < r[i]) swap(A[i], A[r[i]]);
    for(int mid = 1;mid < n; mid <<= 1){
        cp Wn(cos(Pi / mid) , type * sin(Pi / mid));
        for(int R = mid << 1,j = 0;j < n;j += R){
            cp w(1,0);
            for(int k = 0;k < mid;k++,w = w*Wn){
                 cp x = A[j + k],y = w * A[j + mid + k];
                A[j + k] = x + y;
                A[j + mid + k]=x - y;
            }
        }
    }
}

void BU(int sum, int &n){
    int l = 0;n = 1;
    while(n <= sum)l++, n <<= 1;
    for(int i=0;i<n;i++)
        r[i]= ( r[i>>1]>>1 )| ( (i&1)<<(l-1) ) ;
}
int main(){
	//数组是从0开始的
	//BU第一个参数为卷积后的最高次幂
    int lim;
    scanf("%d %d",&n,&m);
    for(int i = 0; i <= n; i++) scanf("%lf",&a[i].x);
    for(int i = 0; i <= m; i++) scanf("%lf",&b[i].x);
    BU(n + m,lim);
    FFT(a, 1, lim),FFT(b, 1, lim);
    for(int i = 0; i <= lim; i++)a[i] = b[i] * a[i];
    FFT(a, -1, lim);

    for(int i = 0; i <= n + m; i++)printf("%d ",int(a[i].x / lim + 0.5));
    return 0;
}

HDU4609
思路:
首先先把所有不同长度的木棍进行数量统计。
然后对这个统计的数组自身进行一次卷积,那么得到的结果就是从原本的数组中的任意两个木棍进行组合的结果。
枚举每根木棍,假设它是最长的
最后只需要减去自身与自身的组合,和自身和别人组合,比自己打的木棍的组合就可以了

#include<bits/stdc++.h>
#define ll long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = 1e6 + 5;
const double Pi=acos(-1.0);
struct cp{
    double x,y;
    cp (double xx=0,double yy=0){x=xx,y=yy;}
}a[maxn];
cp operator + (cp a,cp b){ return cp(a.x+b.x , a.y+b.y);}
cp operator - (cp a,cp b){ return cp(a.x-b.x , a.y-b.y);}
cp operator * (cp a,cp b){ return cp(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);}

int n,m,r[maxn],t,y,p[maxn],mp[maxn];
ll sum[maxn];


void FFT(cp *A,int type, int n){
    for(int i=0;i<n;i++)
        if(i<r[i]) swap(A[i],A[r[i]]);
    for(int mid=1;mid<n;mid<<=1){
        cp Wn( cos(Pi/mid) , type*sin(Pi/mid));
        for(int R=mid<<1,j=0;j<n;j+=R){
            cp w(1,0);
            for(int k=0;k<mid;k++,w=w*Wn){
                 cp x=A[j+k],y=w*A[j+mid+k];
                A[j+k]=x+y;
                A[j+mid+k]=x-y;
            }
        }
    }
}

void BU(int sum, int &n){
    int l = 0;n = 1;
    while(n <= sum)l++, n <<= 1;
    for(int i=0;i<n;i++)
        r[i]= ( r[i>>1]>>1 )| ( (i&1)<<(l-1) ) ;
}

int main(){
    scanf("%d",&t);
    while(t--){
        int lim,maxx = -1;
        ll ans = 0;
        scanf("%d",&n);
        for(int i = 0; i < n; i++)scanf("%d",p + i),maxx = max(maxx, p[i]);
        for(int i = 1; i <= maxx; i++)mp[i] = 0;
        BU(maxx * 2, lim);
        for(int i = 0; i < n; i++)mp[p[i]]++;
        for(int i = 0; i <= maxx; i++)a[i].x = mp[i],a[i].y = 0;
        for(int i = maxx + 1; i <= lim; i++)a[i].x = a[i].y = 0;
        FFT(a,1,lim);
        for(int i = 0; i <= lim; i++)a[i] = a[i] * a[i];
        FFT(a,-1,lim);

        for(int i = 1; i <= maxx * 2; i++)sum[i] = (ll)(a[i].x / lim + 0.5);
        //for(int i = 0; i <= maxx * 2; i++)cout << sum[i] << endl;
        for(int i = 0; i < n; i++)sum[p[i] * 2] -= 1;
        for(int i = 1; i <= maxx * 2; i++)sum[i] = sum[i - 1] + sum[i] / 2;
        sort(p, p + n);

        for(int i = 0; i < n; i++){
            ans += sum[maxx * 2] - sum[p[i]];
            ans -= (n - 1);
            ans -= 1ll * (n - i - 1) * i;
            ans -= 1ll * (n - i - 1) * (n - i - 2) / 2;
        }
        ll f = 1ll * n * (n - 1) * (n - 2) / 6;
        printf("%.7lf\n",(double)ans / f);
    }
    return 0;
}

落谷
落谷题解写的很详细,这里记一下我觉着重要的部分
第一是:
∑ i = j n f [ i ] ∗ g [ i − j ] = ∑ i = 0 n − j f [ j + i ] ∗ g [ i ] \sum\limits_{i = j}^nf[i] * g[i - j] = \sum\limits_{i = 0}^{n - j}f[j +i]*g[i] i=jnf[i]g[ij]=i=0njf[j+i]g[i]
第二个是:
f ′ [ i ] = f [ n − i ] f'[i] = f[n - i] f[i]=f[ni]的变换,凑出两个自变量相加等于一个常数的形式

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;


const double Pi=acos(-1.0);
struct cp{
    double x,y;
    cp (double xx=0,double yy=0){x=xx,y=yy;}
}a[maxn],b[maxn],c[maxn];
cp operator + (cp a,cp b){ return cp(a.x+b.x , a.y+b.y);}
cp operator - (cp a,cp b){ return cp(a.x-b.x , a.y-b.y);}
cp operator * (cp a,cp b){ return cp(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);}

int n,m,r[maxn];
double f[maxn],g[maxn];
void FFT(cp *A,int type, int n){
    for(int i = 0;i < n; i++)
        if(i < r[i]) swap(A[i], A[r[i]]);
    for(int mid = 1;mid < n; mid <<= 1){
        cp Wn(cos(Pi / mid) , type * sin(Pi / mid));
        for(int R = mid << 1,j = 0;j < n;j += R){
            cp w(1,0);
            for(int k = 0;k < mid;k++,w = w*Wn){
                 cp x = A[j + k],y = w * A[j + mid + k];
                A[j + k] = x + y;
                A[j + mid + k]=x - y;
            }
        }
    }
}

void BU(int sum, int &n){
    int l = 0;n = 1;
    while(n <= sum)l++, n <<= 1;
    for(int i=0;i<n;i++)
        r[i]= ( r[i>>1]>>1 )| ( (i&1)<<(l-1) ) ;
}
int main(){
    int lim;
    scanf("%d",&n);
    for(int i = 1; i <= n; i++)
        scanf("%lf",&a[i].x);
    for(int i = 1; i <= n; i++)
        b[i].x = (double)1 / i / i,c[i].x = a[n - i].x;
    c[0].x = a[n].x;
    BU(n + n,lim);
    FFT(a,1,lim),FFT(b,1,lim),FFT(c,1,lim);
    for(int i = 0; i <= lim; i++)a[i] = a[i] * b[i];
    for(int i = 0; i <= lim; i++)c[i] = c[i] * b[i];
    FFT(a,-1,lim),FFT(c,-1,lim);
    for(int i = 1; i <= n; i++)
        printf("%.3lf\n",(a[i].x - c[n - i].x) / lim);
    return 0;
}

DNA
巧妙地把每个字母的匹配转化成了函数的卷积,这个公式的推导不像上个题目一样,但是同样也使用了类似的变换

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;


const double Pi=acos(-1.0);
struct cp{
    double x,y;
    cp (double xx=0,double yy=0){x=xx,y=yy;}
}a[maxn],b[maxn],c[maxn];
cp operator + (cp a,cp b){ return cp(a.x+b.x , a.y+b.y);}
cp operator - (cp a,cp b){ return cp(a.x-b.x , a.y-b.y);}
cp operator * (cp a,cp b){ return cp(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);}

int n,m,r[maxn],t,cnt[maxn];
char str1[maxn],str2[maxn],p[6] = "AGCT";

void FFT(cp *A,int type, int n){
    for(int i = 0;i < n; i++)
        if(i < r[i]) swap(A[i], A[r[i]]);
    for(int mid = 1;mid < n; mid <<= 1){
        cp Wn(cos(Pi / mid) , type * sin(Pi / mid));
        for(int R = mid << 1,j = 0;j < n;j += R){
            cp w(1,0);
            for(int k = 0;k < mid;k++,w = w*Wn){
                 cp x = A[j + k],y = w * A[j + mid + k];
                A[j + k] = x + y;
                A[j + mid + k]=x - y;
            }
        }
    }
}

void BU(int sum, int &n){
    int l = 0;n = 1;
    while(n <= sum)l++, n <<= 1;
    for(int i=0;i<n;i++)
        r[i]= ( r[i>>1]>>1 )| ( (i&1)<<(l-1) ) ;
}
int main(){

    scanf("%d",&t);
    while(t--){
        int lim,len1,len2,ans = 0;
        scanf("%s%s",str1,str2);
        len1 = strlen(str1),len2 = strlen(str2);
        BU(len1 + len2, lim);
        for(int i = 0; i <= lim; i++)cnt[i] = 0;
        for(int i = 0; i < 4; i++){
            for(int j = 0; j < len1; j++)
                a[j].x = (str1[j] == p[i]),a[j].y = 0;
            for(int j = 0; j < len2; j++)
                b[len2 - 1 - j].x = (str2[j] == p[i]),b[len2 - 1 - j].y = 0;
            for(int j = len1; j <= lim; j++)
                a[j].x = a[j].y = 0;
            for(int j = len2; j <= lim; j++)
                b[j].x = b[j].y = 0;

            FFT(a,1,lim),FFT(b,1,lim);
            for(int j = 0; j <= lim; j++)
                a[j] = a[j] * b[j];
            FFT(a,-1,lim);
            for(int j = len2 - 1; j <= len1 - 1; j++)
                cnt[j - len2 + 1] += (int)(a[j].x / lim + 0.5);
        }
        for(int i = 0; i <= len1 - len2; i++)
            if(cnt[i] + 3 >= len2)ans++;
        printf("%d\n",ans);
    }

    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
FFT(快速傅里叶变换)是一种高效的算法,可以在O(nlogn)时间复杂度下计算离散傅里叶变换(DFT)。虽然使用vector实现FFT是比较常见的方法,但也可以使用数组实现FFT。 下面给出一个使用数组实现FFT的C++代码: ```cpp #include <bits/stdc++.h> using namespace std; const double PI = acos(-1); struct Complex { double real, imag; Complex() {} Complex(double r, double i): real(r), imag(i) {} inline Complex operator+(const Complex &c) const { return Complex(real + c.real, imag + c.imag); } inline Complex operator-(const Complex &c) const { return Complex(real - c.real, imag - c.imag); } inline Complex operator*(const Complex &c) const { return Complex(real * c.real - imag * c.imag, real * c.imag + imag * c.real); } }; void FFT(Complex *a, int n, int flag) { for (int i = 1, j = 0; i < n; i++) { for (int k = n; j ^= k >>= 1, ~j & k;); if (i < j) swap(a[i], a[j]); } for (int m = 2; m <= n; m <<= 1) { Complex wm(cos(2 * PI / m), flag * sin(2 * PI / m)); for (int k = 0; k < n; k += m) { Complex w(1, 0); for (int j = k; j < k + (m >> 1); j++, w = w * wm) { Complex u = a[j], t = w * a[j + (m >> 1)]; a[j] = u + t, a[j + (m >> 1)] = u - t; } } } if (flag == -1) for (int i = 0; i < n; i++) a[i].real /= n; } void Convolution(int *a, int na, int *b, int nb, int *res) { static Complex A[1 << 21], B[1 << 21]; int n = na + nb - 1, m = 1; while (m < n) m <<= 1; for (int i = 0; i < m; i++) { A[i] = i < na ? Complex(a[i], 0) : Complex(0, 0); B[i] = i < nb ? Complex(b[i], 0) : Complex(0, 0); } FFT(A, m, 1), FFT(B, m, 1); for (int i = 0; i < m; i++) A[i] = A[i] * B[i]; FFT(A, m, -1); for (int i = 0; i < n; i++) res[i] = (int)(A[i].real + 0.5); } int main() { int a[] = {1, 2, 3, 4}, b[] = {5, 6, 7}; int n = sizeof(a) / sizeof(int), m = sizeof(b) / sizeof(int); static int res[1 << 21]; Convolution(a, n, b, m, res); for (int i = 0; i < n + m - 1; i++) cout << res[i] << " "; return 0; } ``` 上述代码中,`FFT`函数实现了FFT的核心算法,`Convolution`函数实现了两个多项式的卷积。其中,`Complex`结构体表示复数,`FFT`函数的flag参数为1表示进行DFT,为-1表示进行IDFT。`Convolution`函数中使用`static`关键字定义了A和B数组,避免在函数栈上分配大量空间导致栈溢出。注意这里的n和m分别表示两个多项式的次数(不是系数个数),res数组的长度应该为n+m-1。 需要注意的是,这里的数组实现与vector实现类似,只是使用数组代替了vector,因此在实际应用中,可以根据自己的需要选择vector或数组来实现FFT

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值