MATLAB算法实战应用案例精讲-【数模应用】置换检验(附MATLAB和R语言代码)

本文详细介绍了置换检验的原理及其在MATLAB和R语言中的应用,包括独立性检验、中心极限定理等知识拓展,并通过肿瘤大小比较案例展示了如何使用R的coin包进行多样的置换检验,例如t检验、Wilcoxon秩和检验等,讨论了置换检验相对于传统方法的优势和局限性。

目录

前言

算法原理

 置换检验存在的价值是什么?

算法思想

置换检验的原假设

知识拓展

1.独立性检验

 2.大数、中心极限定理 

应用案例

1.肿瘤大小比较案例

问题描述

解题思路

2.R语言中coin函数应用

(1)独立样本传统t检验

(2)单因素精确检验

(3)Wilcoxon-Mann-Whitney U检验(Wilcoxon秩和检验)

(4)K样本置换检验

 (5)与t检验比较

(6)与Wilcox秩和检验比较

(7)K样本检验与方差分析比较

(8)置换检验判断两类别型变量的独立性,与卡方检验比较

(9)置换检验数值变量间的相关性(独立性)与斯皮尔曼相关比较

 (10)两样本和K样本相关性检验

(11)简单线性回归的置换检验

(12)多元线性回归的置换检验

(12)单因素方差分析的置换检验

(13)单因素协方差分析的置换检验

(14)双因素方差分析的置换检验

优缺点

代码实现

R语言

1.permutation test 原理实现过程 

 2.使用coin包实现

MATLAB


前言

置换检验又称为Permutation test,它是Fisher于20世纪30年代提出的一种基于大量计算,利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P值进行推断。

我们一般平时较为常用的检验要属有参检验,但是其要求样本必须满足近似正态,无离群点,数据量大等要求;而有些时候其实很难都满足以上前提条件,则这时需要使用无参检验,其只关注数据的秩,但是无参检验有时也无法处理一些样本数较少的情况,这时则可以使用置换检验。

算法原理

两个分布相同的检验有许多, 比如, 在假定两个总体都服从正态分布的情况下, 可以检验其方差和均值都相等的两个假设。 非参数检验方法有适用于连续分布的Kolmogorov-Smirnov检验。 对于更一般的分布, 已有的检验统计量没有零假设的理论分布或者渐近分布, 无法使用已有的方法。

置换检验是基于对称性的一种计算密集型检验方法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值