目录
(3)Wilcoxon-Mann-Whitney U检验(Wilcoxon秩和检验)
(9)置换检验数值变量间的相关性(独立性)与斯皮尔曼相关比较
前言
置换检验又称为Permutation test,它是Fisher于20世纪30年代提出的一种基于大量计算,利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P值进行推断。
我们一般平时较为常用的检验要属有参检验,但是其要求样本必须满足近似正态,无离群点,数据量大等要求;而有些时候其实很难都满足以上前提条件,则这时需要使用无参检验,其只关注数据的秩,但是无参检验有时也无法处理一些样本数较少的情况,这时则可以使用置换检验。
算法原理

两个分布相同的检验有许多, 比如, 在假定两个总体都服从正态分布的情况下, 可以检验其方差和均值都相等的两个假设。 非参数检验方法有适用于连续分布的Kolmogorov-Smirnov检验。 对于更一般的分布, 已有的检验统计量没有零假设的理论分布或者渐近分布, 无法使用已有的方法。
置换检验是基于对称性的一种计算密集型检验方法,
本文详细介绍了置换检验的原理及其在MATLAB和R语言中的应用,包括独立性检验、中心极限定理等知识拓展,并通过肿瘤大小比较案例展示了如何使用R的coin包进行多样的置换检验,例如t检验、Wilcoxon秩和检验等,讨论了置换检验相对于传统方法的优势和局限性。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



