MATLAB算法实战应用案例精讲-【数模应用】triplet 损失函数(附python代码实现)

本文详细介绍了triplet损失函数在深度学习中的应用,特别是在人脸识别和其他细粒度识别任务中的优势。它能更好地处理非二元分类问题,训练出的特征在相似性比较中更优。triplet loss相比于softmax,更适用于学习样本间的相对距离。文中还探讨了triplet loss的原理,包括损失函数定义、triplet mining的概念,并提供了tensorflow的代码实现,包括offline和online的triplet mining策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

几个高频面试题目

triplet loss 在深度学习中主要应用在什么地方?有什么明显的优势?

​为什么不用softmax,而使用triplet loss?

算法原理

什么是triplet loss 损失函数?

Triplet Loss的定义

Triplet mining

Offline和online triplet mining

Offline triplet mining

Online triplet mining

Triplet Loss在pytorch里面的实现 

更通用的实现

算法思想

模型

训练

验证

知识拓展

Contrastive Loss 和 Triplet Loss 

问题引入

Contrastive Loss

Triplet Loss

原理

FaceNet

代码实现

代码实现

python

用tensorflow实现triplet loss

offline triplets

online triplets

batch hard的实现方式


 

几个高频面试题目

triplet loss 在深度学习中主要应用在什么地方?有什么明显的优势?

NLP里用于找近似文本匹配。对于anchor文本和一个要匹配的文本,如果用二分类问题是不合适的,因为本身目标就不是一个非黑即白的问题;更多的是模型要学出一个rank模型,来比较谁比谁好。所以triplet loss 是更合适的:模型吐出的分数并不代表概率,作为一个实数,仅仅用于比较。所以模型训练的metric也应该是预测正确的和预测错误的比例。​

在实际训练中,triplet loss有个特点,就是loss下降得慢,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值