目录 知识储备 小样本目标检测算法研究及在丝绸文物图案上的应用的详细技术方案 代码实现 1. 安装依赖 2. 导入必要的库 前言 相关技术介绍 2.1 引言 2.2 基于神经网络的目标检测算法 2.2.1 R-CNN目标检测算法 2.2.2 Fast R-CNN目标检测算法 2.2.3 Faster R-CNN目标检测算法 2.3 小样本目标检测 2.3.1 基于数据增强的小样本目标检测 2.3.2 基于Meta R-CNN的小样本目标检测 2.3.3 主要难点 基于CBAM掩码修复数据增强和加权原型网络的小样本目标检测算法 3.1引言 3.2基于CBAM掩码修复数据增强模块和加权原型网络的小样本检 测算法实现 3.2.1 算法整体结构 3.2.2 基于CBAM掩码修复的数据增强模块 3.2.3 加权原型网络设计 3.3 损失函数 3.4 实验设置 3.4.1实验环境与参数设置 3.4.2 实验数据集 3.4.3 评价指标 3.5 实验结果与分析 3.5.1 CBAM掩码修复数据增强模块消融实验 3.5.2 加权原型网络消融实验 3.5.3 对比实验与实验结果 本文篇幅较长,分为上下两篇,下篇详见 小样本目标检测算法研究及在丝绸文物图案上的应用(续) 知识储备