目录
前言
目标检测评价指标
(1)精确率与召回率
(2)交并比
(3)平均精度
YOLOv5在目标检测方面的研究
复杂场景下的目标检测的关键技术
2 基于多尺度特征融合的YOLOv5目标检测算法改进
2.1 引言
2.2 相关工作
2.2.1 FPN
2.2.2 BiFPN
2.2.3 AugFPN
2.3 基于多尺度特征融合网络的改进方法
2.3.1 SPP_ASF模块
2.3.2 网络结构
2.4 对比实验
3 联合注意力机制的YOLOv5目标检测算法改进
3.1 引言
3.2 相关工作
3.2.1 SENet
3.2.2 CBAM
3.2.3 CA
3.3 联合注意力机制的改进方法
3.3.1 AAM模块
3.3.2 网络结构
3.4 对比实验
4 基于回归框加权融合的YOLOv5目标检测算法改进
4.1 引言
4.2 相关工作
4.3 基于回归框加权融合的改进方法
4.4 对比实验
5 YOLOv5模型改进的混合策略
5.1 多改进级联的YOLOv5改进方法
5.2 数据集介绍
5.3 实验环境与参数
5.4 实验结果与分析
前言
目标检测是计算机视觉领域的一项经典任务,其目的是判断在给定图像中 是否存在需要识别的目标,并输出该目标的最小包围框。因此,目标检测是实 例分割、目标跟踪、行为检测、图像描述生成等其他计算机视觉任务的基础。 卷积神经网络(Convolutional Neural Networks,CNN)的出现为目标检测技术 的发展带来了新的空间。2012年,Krizhevsky团队提出了AlexNet,并在当年的 ImageNet挑战赛中超过第二名10.9%,以绝对优势一举夺冠,从而证明了卷积 神经网络在视觉图像处理任务中的能力[ 1]。 当前,国内科技水平不断提高,基础设施建设逐渐展开,目标检测技术在 医疗影像、智能检测与城市安防等各个领域中的应用越来越广泛。然而现实场 景下环境复杂多变,存在物体尺度大小、光照强度、视角变化、遮挡、像素大 小等干扰因素,导致目标检测精度降低,甚至失效。例如,在专业实习中某公 司工地场景下的目标检测项目中,施工场地十分开阔,人员活动范围大,导致 人体目标尺度变化大,在较远距离下ÿ