目录 知识储备 基于YOLOv5和联合注意力机制的目标检测 一、联合注意力模块设计(代码实现) 二、YOLOv5模型集成(修改common.py ) 三、配置文件修改(yolov5s.yaml ) 四、训练与验证 五、性能提升效果(基于COCO数据集验证) 六、关键改进点说明 前言 目标检测评价指标 (1)精确率与召回率 (2)交并比 (3)平均精度 YOLOv5在目标检测方面的研究 复杂场景下的目标检测的关键技术 2 基于多尺度特征融合的YOLOv5目标检测算法改进 2.1 引言 2.2 相关工作 2.2.1 FPN 2.2.2 BiFPN 2.2.3 AugFPN 2.3 基于多尺度特征融合网络的改进方法 2.3.1 SPP_ASF模块 2.3.2 网络结构 2.4 对比实验 3 联合注意力机制的YOLOv5目标检测算法改进 3.1 引言 3.2 相关工作 3.2.1 SENet 3.2.2 CBAM 3.2.3 CA 3.3 联合注意力机制的改进方法 3.3.1 AAM模块 3.3.2 网络结构 3.4 对比实验 4 基于回归框加权融合的YOLOv5目标检测算法改进 4.1 引言 4.2 相关工作 4.3 基于回归框加权融合的改进方法 4.4 对比实验 5 YOLOv5模型改进的混合策略 5.1 多改进级联的YOLOv5改进方法 5.2 数据集介绍 5.3 实验环境与参数 5.4 实验结果与分析 知识储备 基于YOLOv5和联合注意力机制的目标检测