目标检测YOLO实战应用案例100讲-复杂场景下的YOLOv5目标检测算法的改进方法研究

目录

前言

目标检测评价指标 

(1)精确率与召回率 

(2)交并比 

(3)平均精度 

YOLOv5在目标检测方面的研究 

复杂场景下的目标检测的关键技术 

2 基于多尺度特征融合的YOLOv5目标检测算法改进  

2.1 引言 

2.2 相关工作 

2.2.1 FPN 

2.2.2 BiFPN 

2.2.3 AugFPN 

2.3 基于多尺度特征融合网络的改进方法 

2.3.1 SPP_ASF模块 

2.3.2 网络结构 

2.4 对比实验 

3 联合注意力机制的YOLOv5目标检测算法改进  

3.1 引言 

3.2 相关工作 

3.2.1 SENet 

 3.2.2 CBAM 

3.2.3 CA 

3.3 联合注意力机制的改进方法 

3.3.1 AAM模块 

3.3.2 网络结构 

3.4 对比实验 

4 基于回归框加权融合的YOLOv5目标检测算法改进  

4.1 引言 

4.2 相关工作 

4.3 基于回归框加权融合的改进方法 

4.4 对比实验 

5 YOLOv5模型改进的混合策略 

 5.1 多改进级联的YOLOv5改进方法 

5.2 数据集介绍 

5.3 实验环境与参数 

5.4 实验结果与分析 


 

前言

目标检测是计算机视觉领域的一项经典任务,其目的是判断在给定图像中 是否存在需要识别的目标,并输出该目标的最小包围框。因此,目标检测是实 例分割、目标跟踪、行为检测、图像描述生成等其他计算机视觉任务的基础。 卷积神经网络(Convolutional Neural Networks,CNN)的出现为目标检测技术 的发展带来了新的空间。2012年,Krizhevsky团队提出了AlexNet,并在当年的 ImageNet挑战赛中超过第二名10.9%,以绝对优势一举夺冠,从而证明了卷积 神经网络在视觉图像处理任务中的能力[ 1]。  当前,国内科技水平不断提高,基础设施建设逐渐展开,目标检测技术在 医疗影像、智能检测与城市安防等各个领域中的应用越来越广泛。然而现实场 景下环境复杂多变,存在物体尺度大小、光照强度、视角变化、遮挡、像素大 小等干扰因素,导致目标检测精度降低,甚至失效。例如,在专业实习中某公 司工地场景下的目标检测项目中,施工场地十分开阔,人员活动范围大,导致 人体目标尺度变化大,在较远距离下ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值