MATLAB算法实战应用案例精讲-【图像处理】三维重建(最终篇)

本文详细介绍了基于MATLAB的三维重建技术,涵盖了相机定标、姿态估计和对极几何等关键步骤。通过针孔相机模型探讨了图像变形、三维成像方法,并展示了包括ProjectPoints2、FindHomography等在内的实用函数。此外,文章还讨论了不同三维成像方法的性能比较,为机器人视觉、自动驾驶等领域的应用提供了理论和技术支持。
摘要由CSDN通过智能技术生成

目录

前言

相机定标和三维重建

针孔相机模型和变形

三维成像

一、机器视觉系统组成

二、机器人视觉成像的结构形式

三、机器人视觉三维成像方法

四、性能比较

照相机定标

ProjectPoints2

FindHomography

CalibrateCamera2

FindExtrinsicCameraParams2

Rodrigues2

Undistort2

InitUndistortMap

FindChessboardCorners

DrawChessBoardCorners

姿态估计

CreatePOSITObject

POSIT

ReleasePOSITObject

CalcImageHomography

对极几何(双视几何)

FindFundamentalMat

ComputeCorrespondEpilines

ConvertPointsHomogenious


前言

三维重建经过数十年的发展, 已经取得巨大的成功。基于视觉的三维重建在计算机领域是一个重要的研究内容, 主要通过使用相关仪器来获取物体的二维图像数据信息, 然后, 再对获取的数据信息进行分析处理, 最后, 利用三维重建的相关理论重建出真实环境中物体表面的轮廓信息。基于视觉的三维重建具有速度快、实时性好等优点, 能够广泛应用于人工智能、机器人、无人驾驶、SLAM (Simultaneous localization and mapping)、虚拟现实和3D打印等领域。三维重建技术的分类方法如下图所示:

图片

三维重建技术的分类

三维重建技术优缺点对比一览

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值