目标检测YOLO实战应用案例100讲-基于机器视觉的水稻病虫害监测预警

目录

前言

国内外研究现状 

国外研究现状 

国内研究现状 

2 相关理论与技术 

2.1 引言 

2.2 人工神经网络理论 

2.3 卷积神经网络理论 

2.4 基于卷积神经网络的水稻病虫害识别技术 

2.5 数据集构建 

3 基于多尺度特征融合的水稻叶片病害诊断方法 

3.1 引言 

3.2 基于多尺度特征融合的水稻叶片病害诊断方法 

3.2.2 注意力机制 

3.2.3 多任务学习框架 

3.2.4 水稻病害识别模型 

3.2.4.1 Bottleneck网络结构  

3.2.4.2 HS和 RE激活函数  

3.2.4.3 加权代价函数 


本文篇幅较长,分为上下两篇,下篇详见基于机器视觉的水稻病虫害监测预警(续)

前言


近十年以来,随着互联网技术、人工智能技术、物联网技术以及智能硬件(包 括智能手机、无人机等)的普及应用,科技在农业生产中发挥的作用越来越大,涉 及到育种、育苗、播种、除草、施肥、喷药、收割等各个生产环节,极大的提高了 生产效率,从而降低人力的工作量。然而在农作物病虫害识别应用方面,还是以人 眼辨识病虫害种类和严重程度为主,这种工作方式存在诸多缺陷,例如水稻病虫害 发生时间段为每年3月至10月,病虫害发生频次、扩散面积等与稻田气候条件、水 稻生长环境、水肥管理密切相关,这期间需要大量人力深入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值