目标检测YOLO实战应用案例100讲-【目标检测】YOLOV8(二)

目录

几个高频面试题目

YOLOv5、YOLOv8与YOLOv10,性能分析与边缘部署

1 简介

2 YOLOv5

3 YOLOv8

4 YOLOv10

5 YOLOv5、YOLOv8和YOLOv10的对比分析

6 总结

算法原理

YOLOv8网络结构

YOLOv8中的损失函数

IoU损失

分布焦点损失(DFL)

总损失

应用案例-使用YoloV8实现OBB框检测

定向边框(OBB)数据集概述

YOLO支持的 OBB 格式

YoloV8实现OBB训练、测试

训练

验证

DOTA数据集

主要功能

数据集版本

DOTA-v1.0

DOTA-v1.5

DOTA-v2.0

图像裁剪


几个高频面试题目

YOLOv5、YOLOv8与YOLOv10,性能分析与边缘部署

1 简介

YOLO(You Only Look Once)[1]系列彻底改变了实时目标检测,从其诞生以来,几乎推出了十几个变体。尽管YOLO有十多个版本,但YOLOv5[2],YOLOv8[3]和YOLOv10[4]在边缘部署场景中尤其突出。这三种变体因其速度、准确性和效率的最佳平衡而受到关注,特别适合资源受限的环境。

由Ultralytics于2020年推出的YOLOv5在性能和易用性方面取得了重大飞跃,成为许多边缘计算应用的首选解决方案[2]。其人气的持续上升得益于其模块化设计,便于定制,并且能够将训练后的模型导出为ONNX、CoreML和TFLite等多种格式,便于在不同平台部署[2]。

YOLOv8在2023年发布,基于YOLOv5的成功,提供了更高的准确性和用于各种计算机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值