MATLAB算法实战应用案例精讲-【人工智能】【概念篇】联邦学习

目录

前言

几个高频面试题目

联邦学习和传统的分布式学习的区别:

算法原理

联邦学习的概念

发展历程

“联邦学习” 是什么?

“联邦学习” 和隐私计算是什么关系?

 联邦学习的价值

2.1 联邦学习的技术贡献

2.2 联邦学习的公共价值

2.3 联邦学习的商业价值

联邦学习的系统构架

联邦学习的典型工作流程

联邦学习的分类:

联邦学习的应用

联邦学习技术面临的挑战

联邦学习落地案例

 广告领域

金融风控领域

研究方向

优缺点

优点

缺点:

 代码实现

(1)分布式实现代码( 伪代码,不可运行 )

(1)客户端类

基于PaddlePaddle实现联邦学习算法FedAvg

导入数据集

定义模型

构造IID数据

构造Non-IID数据

定义数据读取器

Client本地训练

Server更新

开始训练

IID数据训练

Non-IID训练


 

前言

联邦学习是一种多方在数据安全可控且不出域的基础上进行联合计算,且计算结果通过安全技术保障,为跨组织数据合作提供数据可用不可见的联合建模框架和技术。通过设计虚拟的机器学习模型,解决不同的数据拥有方在不直接交换数据明文的情况下进行协作的问题。联邦学习一般具有以下五个特征:一是各方数据保留在本地,不泄露隐私也不违反法规;二是多个参与者联合数据建立虚拟的共有模型,并且共同获益的体系;三是在联邦学习的体系下,参与者的身份和地位相同;四是联邦学习的建模效果目标是将整个数据集放在一处建模的效果基本相同;五是用户或特征不对齐的情况下,通过交换加密参数达到知识迁移的效果。

几个高频面试题目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值