目录
前言
联邦学习是一种多方在数据安全可控且不出域的基础上进行联合计算,且计算结果通过安全技术保障,为跨组织数据合作提供数据可用不可见的联合建模框架和技术。通过设计虚拟的机器学习模型,解决不同的数据拥有方在不直接交换数据明文的情况下进行协作的问题。联邦学习一般具有以下五个特征:一是各方数据保留在本地,不泄露隐私也不违反法规;二是多个参与者联合数据建立虚拟的共有模型,并且共同获益的体系;三是在联邦学习的体系下,参与者的身份和地位相同;四是联邦学习的建模效果目标是将整个数据集放在一处建模的效果基本相同;五是用户或特征不对齐的情况下,通过交换加密参数达到知识迁移的效果。