TensorFlow 的对象检测 API ( Tensorflow Object Detection API ) 是一个非常强大的工具,可以快速地使任何人(特别是那些像我一样没有机器学习背景的人)来构建和部署功能强大的图像识别系统。Github 上也有详细的使用说明,这里主要是其运用的实践过程。
TensorFlow对象检测API教程 - 第1部分:选择模型
Github 上的 tutorial
这些都将在 Linux
中完成整个教程,但如果可以安装和使用 TensorFlow
,在其他操作系统上使用这些信息也是没问题的。
一. 安装说明
1.1 下载并编译
在你喜欢的目录下新建一个新目录 Tensorflow
,进入此目录下载安装 Tensorflow Object Detection API
。
git clone https://github.com/tensorflow/models.git
如下图
然后请根据 models/blob/master/research/object_detection/g3doc/
目录下的 installation.md 配置好你的环境。应该注意的是,如果你之前安装过 TensorFlow
,也请根据 installation.md 文件里的 Add Libraries to PYTHONPATH
的说明配置好你的环境。
进入目录 models/research/
编译 Object Detection API
代码
# From tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.
如果您不熟悉修改 .bashrc
文件,请将终端控制台 cd
到 models/research /
目录下 ,并输入命令
# From tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
如下图
进入您的终端窗口。如果关闭终端窗口,则必须重新执行此操作。
一步一脚印按照教程环境配置来,其实还是很容易踩到坑的。像我就踩到不少坑
踩坑
跳坑之 tensorflow
安装
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
/home/trsky/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py in <module>()
57
---> 58 from tensorflow.python.pywrap_tensorflow_internal import *
59 from tensorflow.python.pywrap_tensorflow_internal import __version__
/home/trsky/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py in <module>()