TensorFlow 对象检测 API 教程 - 第5部分:保存和部署模型
在本教程的这一步,认为已经选择了预先训练的对象检测模型,调整现有的数据集或创建自己的数据集,并将其转换为 TFRecord 文件,修改模型配置文件并开始训练。但是,现在需要保存模型并将其部署到项目中。
一. 将检查点模型 (.ckpt) 保存为 .pb 文件
回到 TensorFlow 对象检测文件夹,并将 export_inference_graph.py 文件复制到包含模型配置文件的文件夹中。
python export_inference_graph.py --input_type image_tensor --pipeline_config_path ./rfcn_resnet101_coc

本教程第五部分介绍如何保存TensorFlow对象检测API训练的检查点模型为.pb文件,并部署到项目中。首先,将模型 checkpoint 转换为 .pb 文件,然后在Python项目中创建一个交通灯分类器类,利用会话进行图像分类,返回边界框、分数和类别。模型结果按分数降序排列,设定阈值过滤低分结果。
最低0.47元/天 解锁文章
1248

被折叠的 条评论
为什么被折叠?



