目标检测
文章平均质量分 55
往事如yan
左眼425 右眼400 瞳距 64,所以摘了眼镜,我就一标准瞎子
当作笔记来用的,很多东西是ctrl+C and ctrl+V,再 + 一点自己理解
展开
-
YOLOv8训练自定义数据集(超详细)
准备深度学习环境。原创 2023-03-02 10:30:47 · 27172 阅读 · 13 评论 -
SSD网络
two-stage:以R-CNN系列为代表,这类方法通常包括两个部分,第一部分先使用selective search、卷积神经网络等筛选出一些proposal boxes,然后第二部分再对这些proposal boxes进行分类和回归。这就相当于进行了两次分类和回归,因此检测的准确率较高,但是可想而知检测的速度也就比较慢了。 one-stage:以YOLO为代表,这类方法的主要思路就是在图片的不同位置进行密集采样,然后使用CNN网络提取特征并直接进行分类和回归,整个过程只要一步就可完成。这种方法的优势是检原创 2022-03-06 14:36:11 · 5896 阅读 · 0 评论 -
YOLO承上启下---YOLOV2的精进
YOLO v2 也即 YOLO 9000YOLO v2改进的地方0. 主干网络从GoogleNet 换成性能更好的Darknet19.提取特征更细粒度。1. YOLO v2受到faster rcnn的启发,引入了anchor。(anchor是通过在训练集上K-Means方法得到的)2. 引入BN层,训练更快,更稳定,取代dropout防止过拟合,同时提升了mAP值。参考13. 预训练模型先在224×224数据集上训练,最后在448×448数据集上训练10轮,使模型适应检测的448×448原创 2022-03-06 07:52:13 · 2807 阅读 · 0 评论 -
关于FastRCNN ROI pooling的理解
见这篇,讲的很详细:https://www.cnblogs.com/Ann21/p/9824466.html原创 2021-07-18 05:58:42 · 248 阅读 · 0 评论 -
关于特征金字塔结构 FPN,终于听明白了它的原理
https://abcxueyuan.baidu.com/#/play_video?id=15331&courseId=15331&mediaId=mda-kmvq92ymhnszuqpv&videoId=4478§ionId=15580&type=%E5%85%8D%E8%B4%B9%E8%AF%BE%E7%A8%8B&showCoursePurchaseStatus=false31:00浅层网络(下层网络) 感受野小,但是只能感受到纹理等细原创 2021-05-28 05:03:26 · 1407 阅读 · 0 评论 -
目标检测里的损失函数
【Faster RCNN】损失函数理解原创 2021-04-25 16:35:11 · 273 阅读 · 0 评论 -
目标检测 Backbone、Neck、Detection head
backbone:提取基础特征网络head:分类+定位neck:提出一个好的结构或模块,更好适应feature补充backbone:尽管现在学术界已经知道了不用那些在ImageNet上预训练的模型作为backbone,而是自己搭建backbone网络或者使用分类网络,但不会加载预训练模型,也能够达到同样的效果,但是这样的代价就是需要花更多的实践来训练,如何对数据进行预处理也是要注意的,换句话说,给调参带来了更多的压力。关于这一点,感兴趣的读者可以阅读Kaming He的《Rethinking原创 2021-04-19 11:18:46 · 779 阅读 · 0 评论 -
一个很好的讲解FasterRCNN的视频
卷积神经网络里的卷积核到底是怎么提取图像特征,然后交给 SVM或者全连接层去训练一个分类或者边框回归器的https://www.sohu.com/a/277526497_100007727视频如下:https://www.bilibili.com/video/BV1af4y1m7iL?p=3作者其他的视频:https://space.bilibili.com/18161609...原创 2021-01-11 20:11:41 · 286 阅读 · 0 评论 -
目标检测---汇总贴
值得参考的pipeline:https://blog.csdn.net/zong596568821xp/article/details/82015126原创 2020-10-19 08:29:50 · 131 阅读 · 0 评论 -
目标检测图像增强方面需要注意的一些东西
来自:深度学习训练过程中经验分享:https://www.bilibili.com/video/BV1bp4y1e78Q3:37 在文字识别的时候,在增强的时候,旋转过头了就造成文字丢失了。百度搜索图像增强的时候需要注意的点。...原创 2020-10-17 09:44:51 · 335 阅读 · 0 评论 -
RetinaNet——单阶段目标检测模型,处理密集和小规模的物体
https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10246433886886326120%22%7D&n_type=0&p_from=1原创 2020-09-03 16:25:35 · 667 阅读 · 0 评论 -
paddlex目标检测里数据预处理部分
它的 game.zip 里是 类似于 两个文件夹,一个lable 相当于Annotations ,一个train1 文件夹 相当于 JPEGImages!unzip game.zip!mv game data/解压完之后移动到data 文件夹#根据PaddlexX格式的要求,生成三个数据集import osimport zipfileimport xml.etree.ElementTree as ETimport reimport num...原创 2020-08-08 00:28:21 · 476 阅读 · 0 评论 -
神经网络为什么可以(理论上)拟合任何函数?
fourier 变换问题来了为啥要deep呢?答案在这里 居然特别简单 deep了你有高频的震荡了你可以efficient 的locally逼近x^2 然后就有所有local的逼近多项式了local polynomial在holder和sobolev space是optimal的 我们就扩大了空间了【这篇paper发在很一般期刊上而且题目不吸引人我一直忘记 求好心人给reference感谢评论区Yarotsky D. Error bounds for approximations转载 2020-05-27 07:07:01 · 3435 阅读 · 0 评论 -
一文弄懂目标检测里的Anchor
新手也能彻底搞懂的目标检测Anchor是什么?怎么科学设置?[附代码]原创 2020-05-14 16:24:04 · 291 阅读 · 0 评论 -
深度学习环境依赖非官方方法论
首要的,遇到一个开源算法,立马查它主要的 环境配置清单!立马查它主要的 环境配置清单!立马查它主要的 环境配置清单!如果任务过程中死活也还是各种报错信息把所有虚拟环境删掉,然后把anaconda卸载把所有虚拟环境删掉,然后把anaconda卸载把所有虚拟环境删掉,然后把anaconda卸载,重装开源软件奇怪的问题很多的,最恐怖的就是软件版本依赖关系没好,...原创 2020-03-31 08:43:02 · 234 阅读 · 0 评论 -
目标检测预处理分析(列表样本分布,GT可视化)preprocessing
from __future__ import divisionimport osimport xml.dom.minidomimport cv2def read_xml(ImgPath, AnnoPath, Savepath): imagelist = os.listdir(AnnoPath) for image in imagelist: ima...原创 2020-03-13 00:17:32 · 1148 阅读 · 0 评论 -
目标检测 TensorFlow版本Faster R-CNN特征图可视化
(42条消息)【目标检测三】TensorFlow版本Faster R-CNN特征图可视化_人工智能_gusui7202的博客-CSDN博客https://blog.csdn.net/gusui7202/article/details/86491698原创 2020-03-13 00:15:35 · 1289 阅读 · 0 评论 -
CenterNet训练自己的数据集
(43条消息)CenterNet训练自己的数据集_人工智能_DLUT_yan的博客-CSDN博客https://blog.csdn.net/weixin_43384257/article/details/103127958(43条消息)CenterNet-master.zip-深度学习代码类资源-CSDN下载https://download.csdn.net/download/qq_...原创 2020-03-13 00:09:32 · 944 阅读 · 0 评论 -
python对目标检测数据集xml文件操作
(43条消息)python对目标检测数据集xml文件操作_Python_Rock的博客-CSDN博客https://blog.csdn.net/weixin_38632246/article/details/90710139?depth_1-(43条消息)Python对目标检测数据集xml文件操作(统计目标种类、数量、面积、比例等&修改目标名字)_Python_DLUT_yan...原创 2020-03-12 23:54:48 · 3634 阅读 · 1 评论 -
目标检测中图片按指定角度翻转并修改xml文件信息
https://blog.csdn.net/qq_43188211/article/details/99683775?depth_1-原创 2020-03-12 23:42:31 · 407 阅读 · 0 评论 -
目标检测xml文件更改大小
https://blog.csdn.net/andeyeluguo/article/details/89177471原创 2020-03-12 23:41:31 · 287 阅读 · 1 评论 -
目标检测 xml数据的读取与图片和标注数据的同步缩放
https://blog.csdn.net/weixin_44554475/article/details/102666636原创 2020-03-12 23:40:54 · 1045 阅读 · 0 评论 -
目标检测---其他博客主的精彩白嫖
(43条消息)目标检测_墨门_songyuc-CSDN博客https://blog.csdn.net/songyuc/category_9183778.html(43条消息)图像目标检测_东南风的博客_努力努力再努力tq-CSDN博客https://blog.csdn.net/u012426298/category_7645895.html(43条消息)视频目标检测_东南风的博客...原创 2020-03-12 23:36:08 · 199 阅读 · 0 评论 -
目标检测---图像标注工具汇总
(43条消息)【目标检测】Labelme的改进——海量图片的自动标注_人工智能_Kellbook的博客-CSDN博客https://blog.csdn.net/qq_30622831/article/details/80100605?depth_1-(43条消息)深度学习(目标检测。图像分割等)图像标注工具汇总_人工智能_东南风的博客-CSDN博客https://blog.csdn.net...原创 2020-03-12 23:33:03 · 1598 阅读 · 0 评论 -
数据清洗---测试集和训练集分布不一致的情况
在竞赛中,可以会出现提供的数据不符合测试集分布的情况根据百度车道线冠军的经验:数据清洗上,最一开始采用了全部数据训练,发现loss经常出现不规则的跳动,经过排查,发现road 3存在几乎一半以上图像过曝的问题,并且road 3大多在强光下拍摄,不符合测试集的分布,所以很果断的舍弃了road 3,分数也提升了0.01左右(好神奇。。。)。这就说明了,在数据来源不同的情况下,很可能出现训...原创 2020-03-12 23:27:55 · 4821 阅读 · 2 评论 -
目标检测的一些进阶操作
目标检测中的遮挡问题及优化Soft-NMS——解决目标遮挡问题A-Fast-RCNN算法详解(基于变形/遮挡场景)_网络原创 2020-03-12 00:55:02 · 296 阅读 · 0 评论 -
深度学习里的一些常见概念(持续补充输出)
机器学习 101:一文带你读懂梯度下降-云栖社区-阿里云https://yq.aliyun.com/articles/707811?spm=a2c4e.11153940.0.0.2e5816ebXNsuWr原创 2020-03-11 23:58:02 · 244 阅读 · 0 评论 -
一文读懂深度学习框架下的目标检测(附数据集)
从简单的图像分类到3D位置估算,在机器视觉领域里从来都不乏有趣的问题。其中我们最感兴趣的问题之一就是目标检测。如同其他的机器视觉问题一样,目标检测目前为止还没有公认最好的解决方法。在了解目标检测之前,让我们先快速地了解一下这个领域里普遍存在的一些问题。目标检测 vs 其他计算机视觉问题图像分类在计算机视觉领域中,最为人所知的问题便是图像分类问题。图像分类是把一幅图片分成多种类别中的...转载 2020-03-11 23:54:33 · 1892 阅读 · 0 评论 -
训练神经网络的秘笈(总结的几条)
写代码之前总的来说,Andrej Karpathy的技巧就是:不要心急 (文章结尾会道出原因) ,从简单到复杂逐步完善你的神经网络。1、先别着急选算法,撸代码,先整理你的数据集训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。这是因为:神经网络学习过程的本质就是去学习训练集上的数据分布 有一次在整理数据时发现...原创 2020-02-29 00:42:10 · 217 阅读 · 0 评论 -
目标检测里正负样本和数据增广
二. Default boxFig.2 default boxes作者的实验表明default box的shape数量越多,效果越好。因此,对于每个feature map cell而言,一共有6种default box。可以看出这种default box在不同的feature层有不同的scale,在同一个feature层又有不同的aspect ratio,因此基本上可...原创 2020-02-29 00:14:04 · 1767 阅读 · 0 评论 -
2018到2019的目标检测关键论文(补充中...)
3. A Relation Network Based Approach to Curved Text Detection论文链接:https://icdar2019.org/list-of-accepted-papers/该论文创新地提出了一套基于关系网络(Relation Network)的新型文字检测框架,有效提升了通用文本行检测的准确率。该论文发表在ICDAR 2019会上。4...原创 2020-02-09 15:34:07 · 515 阅读 · 0 评论 -
关于Tensorflow Object Detection API注意事项
Lessons learned(经验教训)Some key findings from the Google Researchpaper:谷歌研究报告的一些重要发现:R-FCN and SSD models are faster on average but cannot beat the Faster R-CNN in accuracy if speed is not aconce...翻译 2020-02-08 19:44:44 · 176 阅读 · 0 评论