第八章 Python与统计学

本文介绍了Python在统计学中的应用,包括描述性统计、推断性统计的步骤和核心思想,以及有偏与无偏估计的概念。描述性统计关注数据的集中趋势和变异性的度量,推断性统计通过样本估计总体,而无偏估计则涉及到贝塞尔校正的数学推导。文章还包含了Python代码示例用于随机生成总体数据并进行抽样。
摘要由CSDN通过智能技术生成

目录

8.1 描述性统计

8.2 推断性统计  

  8.2.1 推断性统计的步骤

  8.2.2 假设性检验的核心思想

8.3 有偏与无偏估计

8.3.1 Python代码随机生成总体数据并抽样

8.3.2 公式推导(贝塞尔校正数学推导)


8.1 描述性统计

        有关介绍的网站:https://en.wikipedia.org/wiki/Descriptive_statistics

      描述性统计是一种概括性统计,它定量地描述或总结信息集合中的特征,常用来描述数据集度量的是集中趋势的度量和可变性度量。集中趋势的度量包括均值位数和众数,而变异性的度量包括标准差(或方差)、变量的最小值和最大值、峰度偏度

8.2 推断性统计  

  8.2.1 推断性统计的步骤

        推断性统计顾名思义是通过样本去估计总体sample(sample statistic)--->sampling(estimate)---->population(parameter)。

        总共分为3步:

        (1)抽样(sampling)

        (2)预测(estimate)

        (3)假设检验(Hypothesis test)

        其中做预测(estimate)最重要的就是:

        (1)点估计(Point estimation)假设样本大小n=100, \overline X=175

        (2)区间估计(Confidence interval)Confidence level:95%:\mu = \overline{x} \pm1.96 \times S_{\overline{X}}  (Z/t) n>30

  8.2.2 假设性检验的核心思想

        H_{0}:\mu=175,\overline{X}=140,假设性检验就是先定好一个假设,然后去推翻这个假设。

        假设性检验的步骤:

        一、提出假设

        (1)H_{0}是想要拒绝的假设,H_{a}是接受的假设,单尾假设性检验:

                H_{0}:\mu \geq 180

                H{a}:\mu <180

        (2)双尾假设性检验:

                H_{0}:\mu = 180

                H_{a}:\mu \neq 180

        二、计算t分布

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IntelligentRS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值