题目
题目描述
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入输出格式
输入格式:
一行四个数据,分别表示B点坐标和马的坐标。
输出格式:
一个数据,表示所有的路径条数。
输入输出样例
输入样例#1:
6 6 3 3
输出样例#1:
6
说明
结果可能很大!
分析
当时我一看这道题,毫无疑问啊深搜啊。于是乎我就TLE了。于是我就用dp了
DFS
先附上DFS错误代码
import java.util.*;
public class Main {
static Scanner sc = new Scanner(System.in);
static int Bx = sc.nextInt();
static int By = sc.nextInt();
static int Hx = sc.nextInt();
static int Hy = sc.nextInt();
static int num = 0;
static int A[][] = new int[Bx+2][By+2];
public static void main(String[] args) {
if (Hx >= 2) {
A[Hx - 2][Hy + 1] = 1;
if (Hy > 0)
A[Hx - 2][Hy - 1] = 1;
}
if (Hy >= 2) {
if (Hx > 0)
A[Hx - 1][Hy - 2] = 1;
A[Hx + 1][Hy - 2] = 1;
}
if (Hy > 0)
A[Hx + 2][Hy - 1] = 1;
if (Hx > 0)
A[Hx - 1][Hy + 2] = 1;
A[Hx][Hy]=1;
A[Hx + 1][Hy + 2] = 1;
A[Hx + 2][Hy + 1] = 1;
dfs(0, 0);
System.out.println(num);
}
private static void dfs(int x, int y) {
if (x > Bx||y > By||A[x][y]>0)
return;
if (x == Bx && y == By) {
num++;
return;
}
A[x][y]=2;
dfs(x+1,y);
dfs(x,y+1);
A[x][y]=0;
}
}
DP
这题用递推做很简单,递推式也就是
DP[i][j]=DP[i−1][j]+DP[i][j−1]
D
P
[
i
]
[
j
]
=
D
P
[
i
−
1
]
[
j
]
+
D
P
[
i
]
[
j
−
1
]
也就是等于我们 到左边的可能的路线数+我们上边可能的路线数
递推方程过程如图:
红色的代码马可以到达的地方
以我们的例题数据为例子
我要要到达(6,6)这个位置
马在(3,3)
附上代码
import java.util.*;
public class Main {
static Scanner sc = new Scanner(System.in);
static int Bx = sc.nextInt();
static int By = sc.nextInt();
static int Hx = sc.nextInt();
static int Hy = sc.nextInt();
static int A[][] = new int[Bx+1][By+1]; //用来存放马的位置以及它可以到达的地方
static long M[][] = new long[Bx+1][By+1];//用来存放路线的
public static void main(String[] args) {
if (Hx >= 2) {
A[Hx - 2][Hy + 1] = -1;
if (Hy > 0)
A[Hx - 2][Hy - 1] = -1;
}
if (Hy >= 2) {
if (Hx > 0)
A[Hx - 1][Hy - 2] = -1;
A[Hx + 1][Hy - 2] = -1;
}
if (Hy > 0)
A[Hx + 2][Hy - 1] = -1;
if (Hx > 0)
A[Hx - 1][Hy + 2] = -1;
A[Hx][Hy] = -1;
A[Hx + 1][Hy + 2] = -1;
A[Hx + 2][Hy + 1] = -1;
//上面的操作吧马可以到达的地方全部赋值为-1
M[0][0]=1;
for (int i = 0; i <=Bx; i++) {
for (int j = 0; j <=By; j++) {
if(i==0&&j>0)M[i][j]=M[i][j-1];//防止越界
if(j==0&&i>0)M[i][j]=M[i-1][j];//防止数组越界
if(i>0&&j>0)M[i][j]=M[i-1][j]+M[i][j-1]; //递推方程
if(A[i][j]==-1)M[i][j]=0; //如果是马可到达的地方,那么撤回操作
}
}
System.out.println(M[Bx][By]);
}
}