使用ES做推荐需求

背景

推荐算法涉及的数据范围多,而且来源于不同的表。如果基于mysql去做推荐需求,很快会遇到性能瓶颈。说到底,基于mysql构建的数据模型,适合普通的业务需求,而推荐需求,需要寻找新的数据模型。
因此,引入ES,构建新的数据模型,35W基础数据,性能提升15倍以上(500+ms > 30ms),并且随着数据量的提升,性能提升会更大。

新数据模型架构图

在这里插入图片描述

  1. 通过canal监听mysql数据库相关表的变化,将变更发送给MQ,消费者消费MQ,将变更更新到ES。
  2. 使用HightLevel Client,结合计分脚本painless做推荐业务。
  3. 基于开闭原则,封装相关模块,使得易拓展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值