机器学习第二讲-有监督学习

这篇博客深入探讨了有监督学习中的线性回归模型,包括最简单的回归模型形式、梯度下降求解和概率解释。同时,介绍了分类问题,如logistic回归,以及判别式和产生式方法的区别。内容涵盖了线性回归的局部加权应用和非线性奇函数的线性回归模型。
摘要由CSDN通过智能技术生成

这一章讲三种方法:线性回归方法,判别式的分类方法,产生式的分类方法

线性回归

给出房子的面积,房子的位置,计算出房子的价钱。
input是二维,面积跟位置
在这里插入图片描述
输出目标是价格,我们可以用线性表达式做一个加权
在这里插入图片描述
因此我们可以写成最简单的回归模型形式:
在这里插入图片描述
解这个方程我们可以用梯度下降的方式求
在这里插入图片描述
这是一个最简单的回归,我们可以从概率的角度对他进行解释:
在这里插入图片描述
我们认为所有的结果都是我们的模型加上一个噪声造成的,这个噪声是高斯噪声,均值为0,方差为 (键盘打不出来,你们都懂)
在这里插入图片描述
这样我们可以吧样本中的条件概率写成这种形式:
在这里插入图片描述
就是given x,和参数w,可以求出y的概率。
这样我们就可以定义参数w的似然函数:
在这里插入图片描述
似然函数其实是反应模型中参数的概率的函数,我们取对数就可以把高斯中的指数消掉
在这里插入图片描述
我们最大化这个似然函数就可以得到w,变成了最小二乘问题:
在这里插入图片描述
其实最大化似然函数跟最小化二乘是一样的。
如果是局部加权的线性回归又是什么样的呢?
在这里插入图片描述
在这里我们多了一个参数,这个参数我们也是要求出来的:
在这里插入图片描述
这个参数跟每一个样本都有关系,从物理的角度分析这个问题,就是我们每一次加权时,离它近的点的权重会比较大,影响会大,离它远的点的作用就会小
非线性奇函数的线性回归模型
我们从几何的层面上看,假设y是一个n维的向量,输入样本有N 个,一个样本有一个输出 ,y是一个n 维的向量,把每一个x样本 通过m个奇函数映射到m 维空间,在图中画了两个红色的向量1和2
在这里插入图片描述

分类

我们先对两类问题的分类做一个预备知识:
我们given x ,y=1的概率维t,y=0 的概率维1-t
在这里插入图片描述
分类规则为:
在这里插入图片描述
我们也可以写成:
在这里插入图片描述
log这种式子叫做logit function,logistic function其实是它的反函数。
logistic function
在这里插入图片描述
这个g(.)称作logistic 或者sigmoid function
在这里插入图片描述
logistic 回归是一个分类模型,建立这样一个模型之后就要进行参数的估计
在这里插入图片描述
参数的似然就可以写生下面的形式:
在这里插入图片描述
求所有N个样本的后验概率的乘积,然后再取log,取最小化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

判别式方法和产生式方法的异同

判别式的分类是直接去model它的后验概率或者是去学它的判别函数,比如逻辑回归,SVM,在这里可能对他判别的形式做假设
产生式的是关心数据的生成过程和先验概率,根基先验和似然,求出后验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值