机器学习中的正则化

正则化(Regularization)

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ℓ1​-norm 和 ℓ2​-norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数

                                        

                                            

  • L0范数是指向量中非0的元素的个数。
  • L1范数是指向量中各个元素绝对值之和
  • L2范数是指向量各元素的平方和然后求平方根

L1正则化L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项即为L1正则化项

                                                       lasso regression

下图是Python中Ridge回归的损失函数,式中加号后面一项即为L2正则化项

                                                          ridge regression

一般回归分析中w表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为||w||1
  • L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2

一般都会在正则化项之前添加一个系数,Python的机器学习包sklearn中用α表示,一些文章也用λ表示。这个系数需要用户指定。

L1正则化和L2正则化的作用:

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择的关系

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

正则化和特征选择的关系

假设有如下带L1正则化的损失函数:

                                                              

其中Jo是原始的损失函数,加号后面的一项是L1正则化项α是正则化系数。注意到L1正则化是权值的绝对值之和J是带有绝对值符号的函数,因此J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数Jo后添加L1正则化项时,相当于对Jo​做了一个约束。

令:

                                                                    

J=Jo​+L,此时我们的任务变成在L约束下求出Jo​取最小值的解考虑二维的情况,即只有两个权值w1w2,此时。对于梯度下降法,求解Jo的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来。如下图:

                                                  @图1 L1正则化

                                                                           图1    L1正则化

图中等值线是Jo的等值线,黑色方形是L函数的图形。,这个函数画出来就是一个方框。

在图中,当Jo​等值线与L图形首次相交的地方就是最优解。上图中Jo​与LL的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),Jo与这些角接触的机率会远大于与L其它部位接触的机率(这是很直觉的想象,突出的角比直线的边离等值线更近些),而在这些角上,会有很多权值等于0因为角就在坐标轴上),这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α,可以控制L图形的大小。α越小,L的图形越大(上图中的黑色方框);α越大,L的图形就越小,可以小到黑色方框只超出原点范围一点点,这时最优点的值中的w可以取到很小的值。

类似地,假设有如下带L2正则化的损失函数:

                                                                

同样可以画出他们在二维平面上的图形,如下:

                                                        @图2 L2正则化

                                                                              图2    L2正则化

二维平面下L2正则化的函数图形是个圆(绝对值的平方和,是个圆),与方形相比,被磨去了棱角。因此Jo​与L相交时使得w1w2等于零的机率小了许多(这个也是一个很直观的想象),这就是为什么L2正则化不具有稀疏性的原因,因为不太可能出现多数w都为0的情况。

L2正则化可以获得值很小的参数

以线性回归中的梯度下降法为例,使用Andrew Ng机器学习的参数表示方法。假设要求解的参数为θ是我们的假设函数。线性回归一般使用平方差损失函数。单个样本的平方差是,如果考虑所有样本,损失函数是对每个样本的平方差求和,假设有m个样本,线性回归的代价函数如下,为了后续处理方便,乘以一个常数​:

                                                       

在梯度下降算法中,需要先对参数求导,得到梯度。梯度本身是上升最快的方向,为了让损失尽可能小,沿梯度的负方向更新参数即可。

对于单个样本,先对某个参数求导:

                                                       

注意到的表达式是​. 单个样本对某个参数求导,. 最终上式结果如下:

                                                                

在考虑所有样本的情况,将每个样本对的导数求和即可,得到下式:

                                                         

梯度下降算法中,为了尽快收敛,会沿梯度的负方向更新参数,因此在上式前添加一个负号,并乘以一个系数α(即学习率),得到最终用于迭代计算参数的形式:

                                                        

其中α是学习率(learning rate)。 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

                                              

其中λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,​都要先乘以一个小于1的因子(即),从而使得不断减小,因此总的来看,θ是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

正则化参数的选择

L1正则化参数

通常越大的λ可以让代价函数在参数为0时取到最小值。因为正则化系数越大,正则化的函数图形(上文图中的方形或圆形)会向坐标轴原点收缩得越厉害,这个现象称为shrinkage,过程可以称为shrink to zero. 下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:

                                                               

其中x是要估计的参数,相当于上文中提到的w以及θ. 这个例子中的正则化函数L就是L=λx。注意到L1正则化在某些位置是不可导的,当λ\lambdaλ足够大时可以使得F(x)x=0时取到最小值。如下图:

                                   @图3 L1正则化参数的选择

                                                                     图3   L1正则化参数的选择

作为一个直观的例子,这个图的示例中,取了作为损失函数,其实可以取更复杂的,但不好画图,不过原理是一样的,因为损失函数都是凸函数,很多性质是一样的。

正则化分别取λ=0.5λ=2,可以看到越大的λ越容易使F(x)x=0时取到最小值。

此外也可以自己计算一下,当损失函数f(x)和正则化函数L=x在定义域内第一次相交的地方,就是整个代价函数F(x)的最优解。

L2正则化参数

从公式:

                                             

可以看到,λ越大,衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小,同样是一个shrink to zero的过程,原理与L1正则化类似。

 

 

 

 

 

 

 

 

 

 

 

 

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值