【python机器学习】——正则化

本文详细阐述了正则化在机器学习中的作用,包括防止过拟合、提高泛化能力、L1和L2正则项的区别(L1的稀疏性和L2的平滑性),以及如何通过Lasso回归和Ridge回归应用这两种正则化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里写目录标题

  • 正则化 regularization
    • 正则化的目的
      • 过拟合和欠拟合
    • L1正则项与L2正则项
    • L1稀疏,L2平滑
  • 总结

正则化 regularization

正则化的目的

正则化是机器学习中的一种技术,主要用于减少模型的复杂度,防止过拟合,提高模型的泛化能力。过拟合是指模型在训练数据上学习得非常好,但在未知数据上表现不佳。为了避免这种情况,我们可以通过正则化来惩罚模型的参数,使得模型变得更简单。

正则化的目的主要有以下几点:

1.防止过拟合:通过限制模型的复杂度,正则化有助于防止模型在训练数据上过度拟合,从而提高模型在未知数据上的表现。

2.提高泛化能力:正则化可以使得模型在训练数据和测试数据之间取得更好的平衡,从而提高模型的泛化能力。

3.减少模型参数:正则化会使得部分参数的值变得更小,从而减少模型的参数数量,使得模型更简单。

4.加速模型训练:正则化可以减少模型的参数数量,从而加速模型的训练过程。

过拟合和欠拟合

(1) under fit:还没有拟合到位,训练集和测试集的准确率都还没有到达最高。
(2) over fit:拟合过度,训练集的准确率升高的同时,测试集的准确率反而降低。学的过
度了,做过的卷子都能再次答对,考试碰到新的没见过的题就考不好。
(3) just right:过拟合前训练集和测试集准确率都达到最高时刻。学习并不需要花费很多
时间,理解的很好,考试的时候可以很好的把知识举一反三。真正工作中我们是奔着过
拟合的状态去调的,但是最后要的模型肯定是没有过拟合的。

如下图所示:
在这里插入图片描述正则化就是防止过拟合,增加模型的鲁棒性 robust,鲁棒是 Robust 的音译,也就是强壮的意思。鲁棒性调优就是让模型拥有更好的鲁棒性,也就是让模型的泛化能力和推广能

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值