ndarray进行判断

import numpy as np

# 返回ndarray:[[ -1  25   8   7], [ 16  -5  -4   9], [ 12 -30   0  -4]]
img_np = np.array([[-1, 25, 8, 7], [16, -5, -4, 9], [12, -30, 0, -4]])
# 返回list:[[-1, 25, 8, 7], [16, -5, -4, 9], [12, -30, 0, -4]]
img_list = [[-1, 25, 8, 7], [16, -5, -4, 9], [12, -30, 0, -4]]
# list转ndarray:[[ -1  25   8   7], [ 16  -5  -4   9], [ 12 -30   0  -4]]
img_list_to_np = np.array(img_list)
# 返回ndarray,其元素为Boolean,且只对ndarray有效,如果需要对list进行比较操作,需要将list转为ndarray
# [[False  True  True  True], [ True False False  True], [ True False False False]]
c = img_np > 0
# 将满足判断条件的元素按照原始顺序组成新的ndarray:[25  8  7 16  9 12]
a = img_np[img_np > 0]
# 将满足判断条件的元素按照原始顺序组成新的ndarray:[25  8  7 16  9 12]
b = img_list_to_np[img_list_to_np > 0]
# 将符合条件的值赋值为新值:[[ -1   1   1   1], [  1  -5  -4   1], [  1 -30   0  -4]]
img_np[img_np > 0] = 1


print(a)

注意:list不能判断元素,需要转为ndarray才可以进行判断

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值