问题描述:
用天平称重时,我们希望用尽可能少的砝码组合称出尽可能多的重量。
如果只有5个砝码,重量分别是1,3,9,27,81。则它们可以组合称出1到121之间任意整数重量(砝码允许放在左右两个盘中)。
本题目要求编程实现:对用户给定的重量,给出砝码组合方案。
例如:
用户输入:
5
程序输出:
9-3-1
用户输入:
19
程序输出:
27-9+1
要求程序输出的组合总是大数在前小数在后。
可以假设用户的输入的数字符合范围1~121。
【解题思路提示】
我们把已知的砝码序列记为:x1, x2, x3, x4, x5, x6 (这里多加一个标准砝码,为解题叙述方便)
对于任意给定的重量x,如果刚好等于xi 则问题解决。
否则一定会位于两个标准砝码重量的中间,不妨设为:xi < x < xj
令 a = x – xi, b = xj – x
则,x 要么可以表示为: xi + a, 要么可以表示为: xj – b
这样问题就归结为怎样表示出 a 或 b
另一思路:对于每个xi,可以乘以一个系数ki,再求和。
ki的数值无外乎:-1 0 1
这样,因为标准砝码的数量的很少的,我们就可以多层循环暴力组合ki来求解。
还有更“土气”但有效的思路:既然输入范围只有120左右,如果对每一种情况都做人工求解,只要列一个大表,等查询的时候,直接输出答案就好了啊!但…这似乎是个耗时的工程…
作者:何知令
用天平称重时,我们希望用尽可能少的砝码组合称出尽可能多的重量。
如果只有5个砝码,重量分别是1,3,9,27,81。则它们可以组合称出1到121之间任意整数重量(砝码允许放在左右两个盘中)。
本题目要求编程实现:对用户给定的重量,给出砝码组合方案。
例如:
用户输入:
5
程序输出:
9-3-1
用户输入:
19
程序输出:
27-9+1
要求程序输出的组合总是大数在前小数在后。
可以假设用户的输入的数字符合范围1~121。
【解题思路提示】
我们把已知的砝码序列记为:x1, x2, x3, x4, x5, x6 (这里多加一个标准砝码,为解题叙述方便)
对于任意给定的重量x,如果刚好等于xi 则问题解决。
否则一定会位于两个标准砝码重量的中间,不妨设为:xi < x < xj
令 a = x – xi, b = xj – x
则,x 要么可以表示为: xi + a, 要么可以表示为: xj – b
这样问题就归结为怎样表示出 a 或 b
另一思路:对于每个xi,可以乘以一个系数ki,再求和。
ki的数值无外乎:-1 0 1
这样,因为标准砝码的数量的很少的,我们就可以多层循环暴力组合ki来求解。
还有更“土气”但有效的思路:既然输入范围只有120左右,如果对每一种情况都做人工求解,只要列一个大表,等查询的时候,直接输出答案就好了啊!但…这似乎是个耗时的工程…
作者:何知令
完成时间:2017年5月13日
这里选用的是第二种方法
代码如下:
/*
问题描述:
用天平称重时,我们希望用尽可能少的砝码组合称出尽可能多的重量。
如果只有5个砝码,重量分别是1,3,9,27,81。则它们可以组合称出1到121之间任意整数重量(砝码允许放在左右两个盘中)。
本题目要求编程实现:对用户给定的重量,给出砝码组合方案。
例如:
用户输入:
5
程序输出:
9-3-1
用户输入:
19
程序输出:
27-9+1
要求程序输出的组合总是大数在前小数在后。
可以假设用户的输入的数字符合范围1~121。
【解题思路提示】
我们把已知的砝码序列记为:x1, x2, x3, x4, x5, x6 (这里多加一个标准砝码,为解题叙述方便)
对于任意给定的重量x,如果刚好等于xi 则问题解决。
否则一定会位于两个标准砝码重量的中间,不妨设为:xi < x < xj
令 a = x – xi, b = xj – x
则,x 要么可以表示为: xi + a, 要么可以表示为: xj – b
这样问题就归结为怎样表示出 a 或 b
另一思路:对于每个xi,可以乘以一个系数ki,再求和。
ki的数值无外乎:-1 0 1
这样,因为标准砝码的数量的很少的,我们就可以多层循环暴力组合ki来求解。
还有更“土气”但有效的思路:既然输入范围只有120左右,如果对每一种情况都做人工求解,只要列一个大表,等查询的时候,直接输出答案就好了啊!但…这似乎是个耗时的工程…
作者:何知令
完成时间:2017年5月13日
*/
#include <stdio.h>
#include <stdlib.h>
void sort(int w[])
{
int have=1;
int i,t;
while(have!=0)
{
have=0;
for(i=0; i<4; i++)
{
if(w[i]<w[i+1])
{
t=w[i];
w[i]=w[i+1];
w[i+1]=t;
have++;
}
}
}
}
int main()
{
int state[5];
int n,o;
int first;
int w[5]= {1,3,9,27,81};
while(~scanf("%d",&n))
{
first=0;
for(state[0]=-1; state[0]<2; state[0]++)
for(state[1]=-1; state[1]<2; state[1]++)
for(state[2]=-1; state[2]<2; state[2]++)
for(state[3]=-1; state[3]<2; state[3]++)
for(state[4]=-1; state[4]<2; state[4]++)
{
if(w[0]*state[0]+w[1]*state[1]+w[2]*state[2]+w[3]*state[3]+w[4]*state[4]==n)
{
sort(w);
for(o=0; o<5; o++)
{
if(state[o]==-1)
printf("-%d",w[o]);
else if(state[o]==1)
{
if(first==1)
printf("+");
printf("%d",w[o]);
}
first=1;
}
printf("\n");
}
}
}
return 0;
}
程序云结果展示:
知识点总结:爆搜,结构控制,函数使用
学习心得:没提示我不会....得想办法提升自己的解题思路