3D 模型生成在计算机视觉领域有着广泛的应用,从虚拟现实到自动驾驶,基于单张图像的 3D 重建技术正在迅速发展。这篇博客将带你深入探索如何使用 Zero-1-2-3 框架进行多视图 3D 重建,通过详细解析该框架中的代码结构和功能,帮助你理解其工作原理并实际应用到 3D 模型生成中。
一、项目概述
Zero-1-2-3 是一个通过扩散模型(Diffusion Models)将单张 2D 图像转换为 3D 网格模型的项目。与传统的 3D 重建技术不同,Zero-1-2-3 采用了一个基于图像生成的多阶段流程,利用不同视角的多张图片推理,生成高精度的 3D 模型。
该项目使用了以下几个重要的组件:
- Zero-1-2-3 模型:基于预训练的扩散模型,生成目标图像的多视角图像。
- Segment Anything Model (SAM):用于处理图像中的前景和背景。
- 多视角生成:从单张输入图像开始,通过多阶段生成多个视角下的图片,再进行 3D 重建。
二、代码解析
Zero-1-2-3 的代码逻辑分为多个部分,包括图像预处理、多视角生成、推理过程、3D 模型重建等。在本博客中,我们会详细解析每一部分的核心功能。
1. 图像预处理
在 3D 重建过程中,输入图像的预处理尤为重