gre阅读中常见的错误选项

gre阅读中常见的错误选项
4+4错误选项

4必错
原文无关的两者,在选项中强行发生关系(两个没有因果、类比、对比等关系的AB,在选项中强行发生关系,或是关系错乱)
原文与选项有程度差异。(例:原文是两个因素导致了一个现象的发生,而选项里变成了某一个因素完全导致那个现象的发生。)
原文与选项相反
定位错误/原文没提
如果做题的时候发现某一个选项不靠谱,那么我们一定可以在以上四种中找到一中错误原因

4易错
极端现象 all must never
预测未来 (文章中在介绍一个老观点的时候还没有出现某个新观点,而选项却说老观点是针对某个新观点提出的)
method methodology(墓碑词汇,如果选项里出现了这个往往错误的)实验方法往往在文章是略读,或是不重要的,则出现了这两个词汇的时候往往会出现某些错误
解决争议 ①reconcile contradictions ②resolve disputes
                   在gre中经常会出现新旧两种观点的同时出现,但结果有可能是多种情况:有可能作者只是单纯的列举出来这两种观点进行对比,也有可能通过论述新观点把老观点干死了,这些都不叫reconcile或者是resolve。这样的话,用了这种字眼的选项就是错的了。

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值